
asix5 User’s Manual 

 

 
 
 

  
 
 
 
 
 
 

 see and get more … 

 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Driver BUFOR – User’s Manual 
 

 
 
 
 

 
 
 

Doc. No. ENP5026 
Version: 28-10-2007 

 

 



User’s Manual asix5

 

ASKOM® and asix ® are registered trademarks of ASKOM Spółka z o.o., Gliwice. Other brand 
names, trademarks, and registered trademarks are the property of their respective holders. 
 
All rights reserved including the right of reproduction in whole or in part  in any form. No part  of 
this publication may be reproduced or transmitted in any form or by any means, electronic or 
mechanical, including photocopying, recording, or by any information storage and retrieval system, 
without prior written permission from the ASKOM.  
 
ASKOM sp. z o. o. shall not be liable for any damages arising out of the use of information included 
in the publication content. 
 
Copyright © 2007, ASKOM Sp. z o. o., Gliwice 
 

 

 
  

    

             

 
ASKOM Sp. z o. o., ul. Józefa Sowińskiego 13, 44-121 Gliwice, 
tel. +48 (0) 32 3018100, fax +48 (0) 32 3018101, 
http://www.askom.com.pl, e-mail: office@askom.com.pl 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Driver Bufor manual Description 

 

©ASKOM, Gliwice October 2007 3 

1. Bufor 
 
 A comprehensive transmission channel named BUFOR was implemented in asix 
visualization system. The channel allows exchanging data between ASMEN 
communication manager and any process data transmission software developed by the 
user. 
 
The BUFOR channel is realized by two programs: 

• a general purpose driver (hereinafter referred to as BUFOR, supplied by ASKOM), 
which ensures communication between ASMEN communication manager and any 
user program, 

• a user driver (hereinafter referred to as USERDRV), implemented as a process 
operating in WINDOWS /NT/2000 environment. 

 
Data exchange between the programs under consideration is realized by a memory mapped 
file. Synchronization of access to the memory mapped file takes place with the use of a 
mutex object. 

 

2. Description of User Driver Resources 
 
 
The memory mapped file used to exchange data between USERDRV and BUFOR must be 
created by USERDRV. Structures of the data that describe process variables contained in 
this file must be prepared by USERDRV on the driver initialization stage and made 
accessible via UserDesc descriptor located in the beginning of the memory mapped file. 
Below the UserDesc descriptor structure is presented: 
  
struct UserDesc 
{ 
#define USER_NAME 15 
byte name[USER_NAME];  // driver name 
word progMajor  // USERDRV version number 
word progMinor;  // USERDRV version minor number 
word major;  // protocol version major number 
word minor;  // protocol version minor number 
word flags;  // operation characteristics 
word status;  // driver status 
word items;  // number of variables handled 
  // (number of variable descriptors in VarDesc  
 // table) 
DWORD varDescOffset;  // location of the variable descriptors table 
// in memory mapped file (offset with respect to the beginning 
// of memory mapped file) 
HANDLE synchroMutex;  // handle of mutex synchronization object 
word globalRead;  // global read flag 
word globalWrite;  // global write flag 
word rezerwa1; 
word rezerwa2; 
}; 
 
Below the meanings of the UserDesc structure fields are presented: 

Name - information meaning 

 



Description Driver Bufor manual 

 

4 October 2007 ©ASKOM, Gliwice 

progMajor - information meaning 
progMinor - information meaning 
major - for verification of BUFOR and USERDRV version conformity 
minor - for verification of BUFOR and USERDRV version conformity 
flags - defines operating mode of USERDRV . The field is a bit flag. The 

following flags are defined at present: BFLAG_USERTIME - 
USERDRV sets read times for BFLAG_AUTOREFRESH 
variables - USERDRV automatically refreshes data without waiting 
for signal from BUFOR. The remaining bits of the flags field must 
be cleared. 

Status - current status of USERDRV. It has not been defined how the field 
is to be used yet. It should be cleared at beginning. 

globalRead  - the flag is used to transfer read orders from BUFOR to 
USERDRV. Detailed description of their usage can be found in 
read operation description. The field should be initialized to 0, 

globalWrite  - the flag is used to transfer write orders from BUFOR to 
USERDRV. Detailed description of their usage can be found in 
write operation description. The field should be initialized for the 
value of 0, 

synchroMutex - handle of mutex synchronization object used to synchronize 
BUFOR and USERDRV's access to the common memory mapped 
file. 

rezerwa1  - reserve field, initialized to 0, 
rezerwa2  - reserve field, initialized to 0. 

 
The user program name, memory mapped file name and parameters transferred to the user 
program as command line parameters are declared when the BUFOR is being 
parameterized (section ASMEN  in 'ini' file). 
 
 

3. Process Variable Descriptors 
 
 
Process variables are described by descriptors included in the VarDesc table. The VarDesc 
table can be found in the memory mapped file. Position of the table with respect to the 
beginning of the memory mapped file is defined in varDescOffset field in UserDesc 
descriptor. 
 
Any operations performed by the BUFOR and USERDRV are based on the contents of 
VarDesc descriptors. 
 
Descriptors are initialized partially by USERDRV on USERDRV process setup (entering the 
type, number of variables, read and write buffer offsets), whereas their full initialization is 
completed by BUFOR driver during ASMEN process variables’ database creation stage. 
 
Below the VarDesc descriptor structure is presented: 
 
 typedef struct VarDesc VARD 
 
 struct VarDesc 
{ 
word type; // type of variable 
word items; // maximum number of variable components (variable can 

be  

 



Driver Bufor manual Description 

 

©ASKOM, Gliwice October 2007 5 

 // represented by a table) 
dword period; // intervals (in seconds) between variable value refreshing 

operations 
/* fields used during the read/refreshing operations */ 
DWORD readBuffer; // position of the beginning of the read/refreshing operation 

buffer 
 // with respect to the beginning of the memory mapped file 
word readDataStat; // status of the variable value read out 
word readQuery; // status of read/refreshing commands 
word readResponse; // status of read/refreshing command realization 
dword readTime; // time of read operation sent to ASMEN 
byte readRez1; // reserved field 
word readRez2; // reserved field 
/* fields used during write operations */ 
DWORD writeBuffer; // position of the beginning of the read/refreshing operation 

buffer 
 // with respect to the beginning of the memory mapped file 
word writeDataStat; // status of variable value write operation  
word writeQuery; // status of write commands 
word writeResponse; // status of write command realization 
byte writeRez1; // reserved field 
word writeRez2; // reserved field 
}; 
 
USERDRV initializes the following fields of VARD structure: 
 
type  - used by BUFOR to check whether the variable type 

conforms to the type expected by the calculation function declared 
for this variable. List of variable types can be found in bufor.h 
header file, 

items - maximum number of items (for tabular variables), 
readBuffer - position of the buffer, used to read variables, with respect to the 

beginning of the memory mapped file. The buffer size should be 
the same as the variable size, 

writeBuffer - position of the buffer, used to write variables, with respect to the 
beginning of the memory mapped file. The buffer size should be 
the same as the variable size. When it is equal to NULL, the 
variable write operation is denied, 

readRez1 - reserve field. Initialized to 0, 
readRez2 - reserve field. Initialized to 0, 
writeRez1 - reserve field. Initialized to 0, 
writeRez2 - reserve field. Initialized to 0, 
 
The remaining fields are set by BUFOR when creating the list of variables. Alternatively, 
they are synchronizing fields. In any case, the fields should be initially set to 0. 
 
The meanings of the fields initialized by BUFOR are as follows: 
period - refreshing time (in seconds). Set by BUFOR. It is designed for 

information purpose only. ASMEN counts the refreshing times and 
will order the read operations at appropriate times. USERDRV, 
which automatically refreshes variables, can use the period field to 
define the intervals between read operations, 

readTime - in readTime field, USERDRV passes the variable read time as a 
number of seconds since 01.01.1980. When the 

 



Description Driver Bufor manual 

 

6 October 2007 ©ASKOM, Gliwice 

BFLAG_USERTIME flag has not been set in UserDesc 
descriptor, the driver has not to handle this field. 

readDataStat 
readQuery 
readResponse - read operation synchronization fields. Meaning described in Read 

Operation, 
writeDataStat 
writeQuery 
writeResponse - write operation synchronization fields. Meaning described in 

Write Operation, 
 
 

4. BUFOR Driver Parameterization 
 
 
BUFOR parameterization requires that the following information should be given: 

• name of the memory mapped file, which is used to exchange data between 
BUFOR and USERDRV, 

• name of the program to be loaded by BUFOR as USERDRV, 
• command line parameters to be sent to USERDRV. 

 
Below the user driver declaration is given. It is performed by USER.EXE, which 
exchanges data with BUFOR driver via PLIK_MMF memory mapped file. Three 
parameters are passed to USER.EXE. 
 

TEST = BUFOR, PLIK_MMF, USER, PAR1 PAR2 PAR3 
 

whereas TEST is the name of the logical channel that uses the user driver. 
 
 

5. Process Variable Declaration 
 
 
Symbolic address of a process variable is as follows: 
 
  Iindex 
  
where: 

index - index of a given variable from the driver (VarDesc) variable 
descriptors' table. Index of the first variable is 1. 

 
The remaining parameters in the process variable declaration have typical meaning. 
 
 

6. Obtaining Access to Common Data 
 
 
Due to independent operation of BUFOR and USERDRV it is necessary to ensure 
synchronized access to common data during performing the variable read /write operations 
via common memory mapped file. 
 

 



Driver Bufor manual Description 

 

©ASKOM, Gliwice October 2007 7 

Synchronization of that access is performed basing on API WIN32 procedures that operate 
on mutex object. It is assumed that mutex, which synchronizes access to memory mapped 
file will be created by USERDRV on its initialization stage and that mutex’s handle will be 
passed to BUFOR via synchroMutex field in UserDesc descriptor. 
 
Below there is an example of a source code to create mutex: 
 
 HANDLE TestMutex; 
 struct UserDesc UserDesc; 
 
 short CreateSemaphore(void) 
 { 
 if (TestMutex = CreateMutex(NULL,   FALSE, NULL)  == NULL) 
  { 
  /* mutex creation error. Return with error */ 
  return ERROR; 
  } 
 
 /*  passing the handle to BUFOR */ 
 up->synchroMutex = TestMutex; 
 return OK; 
 } 
 
 
Below there is an example code that performs synchronized access to the memory mapped 
file: 
 
 void HandleCommonData(void) 
 { 
  /* waiting for access to memory mapped file */   
  WaitForSingleObject(TestMutex,INFINITE);   
  /* safe operation on common data */ 
 
   . 
   . 
   . 
  /* release of access right to memory mapped file */ 
  ReleaseMutex(TestMutex); 
 } 
 
 

7. Read Operation 
 
 
The following fields of VARD structure are involved in read operations: readBuffer, 
readDataStat, readQuery, readResponse, readTime. The readTime, readDataStat fields 
and readBuffer buffer may only be changed by USERDRV. The readResponse and 
readQuery fields are changed by both parties. Definitions of the flags used in the 
description and operation execution status are defined in bufor.h header file. 
 
The following operations are performed for USERDRV that does not refresh of process 
variable values automatically. 
 
Operation sequence of BUFOR driver – initialization of read operation : 

 



Description Driver Bufor manual 

 

8 October 2007 ©ASKOM, Gliwice 

1) obtain access right, 
2) if INREAD bit in readResponse field is set (previous read is still performed), read 

initialization is given up, 
3) clear readResponse field, 
4) set the REQUEST flag in readQuery field, 
5) repeat steps 2/, 3/ and 4/ for all the variables for which read operation is being 

initialized, 
6) set READ_REQUEST value in globalRead field in UserDesc descriptor, 
7) release access right. 

 
 
Operation sequence for USERDRV driver – initialization of read operation  on BUFOR 
request: 

1)   check globalRead field in UserDesc descriptor. If it is different from 0, clear it 
and then review all the variables according to steps 2/ to 7/, 

2) obtain access right, 
3) heck REQUEST flag in readQuery field, If flag is set, perform steps 4/ and 5/, 
4) lear readQuery field, 
5) execute the internal initialization of physical read operation and set INREAD flag 

in readResponse field, 
6) execute steps 3/, 4/ and 5/ for all variables, 
7) release access right. 

 
 
Operation sequence for USERDRV – completion of read operation: 

1) obtain access right, 
2) enter new value into readBuffer, set readDataStat and readTime fields (if 

USERDRV sets the read time on its own), 
3) set DONE flag and clear INREAD flag in readResponse field, 
4) repeat steps 2/ and 3/ for all the variables, which read operation has been 

completed, 
5) release access right. 

 
Operation sequence for BUFOR – read operation completion: 

1) obtain access right, 
2) for all the variables, which DONE flag is set in readResponse field, retrieve the 

contents of readBuffer buffer and readDataStat and readTime fields, 
3) release access right. 

 
 

8. Write Operation 
 
 
The following fields are involved in write operations of process variable : writeBuffer, 
writeDataStat, writeQuery, writeResponse. The writeDataStat field may be changed by 
USERDRV only. The writeBuffer buffer is changed by BUFOR only. The writeResponse 
and writeQuery fields are changed by both the parties. Definitions of any flags used in the 
description and status of operation execution are defined in bufor.h header file. 
 
Operation sequence for BUFOR – initialization of write operation: 

1) obtain access right, 
2) if INWRITE bit in writeResponse field is set (previous write operation is still being 

performed), initialization is given up (error status or retry to perform write 
operation after some time), 

 



Driver Bufor manual Description 

 

©ASKOM, Gliwice October 2007 9 

3) clear writeResponse field, 
4) enter a new value in writeBuffer, setting REQUEST flag in writeQuery field, 
5) repeat steps 2/, 3/ and 4/ for all variables written in a specific cycle of BUFOR 

operation, 
6) set WRITE_REQUEST value in globalWrite field in UserDesc descriptor, 
7) release access right. 

 
 
Operation sequence for USERDRV – write operation initialization: 

1) check globalWrite field in UserDesc descriptor. If it is different from 0, clear it and 
then review all the variables in a way described below, 

2) obtain access right, 
3) if REQUEST flag is set in writeQuery field, perform steps 4/ and 5/, 
4) clear writeQuery field, 
5) perform internal initialization of physical write operation and set INWRITE flag in 

writeResponse field, 
6) repeat steps 3/, 4/ and 5/ for all the process variables, 
7) release access right. 

 
Operation sequence for USERDRV – completion of write operation: 

1) obtain access right, 
2) set writeDataStat field, 
3) clear INWRITE flag and set DONE flag in writeResponse field, 
4) repeat steps 2/ and 3/ for all variables, which write operation has been completed, 
5) release access right. 

 
Operation sequence for BUFOR – completion of write operation: 

1) obtain access right, 
2) if DONE flag is set  in writeResponse field, then the status is retrieved from 

writeDataStat field, 
3) repeat step 2/ for all variables, which write operation has been initialized, 
4) release access right. 

 
 

9. Bufor.h Header File  
 
 
Definitions of any flags used in the description and status of operation execution are 
defined in bufor.h header file. Below the content of this file is presented. 
 
 
 
#define BFLAG_USERTIME  1 
#define BFLAG_AUTOREFRESH 2 
 
/* read or write operation request flag */ 
#define REQUEST   1 
 
/* flags that describe statue of read or write operation  */ 
#define INREAD    1 
#define INWRITE   1 
#define DONE    2 
 
/* types of process variables */ 

 



Description Driver Bufor manual 

 

10 October 2007 ©ASKOM, Gliwice 

#define  BTYPE    1  // byte 
#define  ITYPE    2  // integer 
#define  WTYPE    3  // unsigned integer 
#define  LTYPE    4  // long 
#define  DWTYPE   5  // unsigned long 
#define  FPTYPE    6  // float type 
 
 
/* status of operation completion returned by driver */ 
#define  AVD_GOOD   0  // o.k. 
#define  AVD_BAD   1  // data does not exist 
#define  AVD_FAIR   2  // data from previous read operation. 
Current  
        // read operation has completed with error 
#define AVD_POOR   3  // data indicated by driver as  
        // not valid 
#define AVD_ERROR   4  // data indicated by driver as bad 
 

 

 



Driver Bufor manual Index 

 

©ASKOM, Gliwice October 2007 11 

 

Index 
BUFOR driver parameterization 6 
Bufor.h header file 9 
Description of user driver resources 3 
Introduction 3 
Obtaining access to common data 6 

Process variable declaration 6 
Process variable descriptors 4 
Read operation 7 
Write operation 8 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Index Driver Bufor manual 

 

12 October 2007 ©ASKOM, Gliwice 
 

 
 



Driver Bufor manual Contents 

 

©ASKOM, Gliwice October 2007 13 
 

1. BUFOR....................................................................................................................................................... 3 
2. DESCRIPTION OF USER DRIVER RESOURCES............................................................................. 3 
3. PROCESS VARIABLE DESCRIPTORS ............................................................................................... 4 
4. BUFOR DRIVER PARAMETERIZATION .......................................................................................... 6 
5. PROCESS VARIABLE DECLARATION.............................................................................................. 6 
6. OBTAINING ACCESS TO COMMON DATA ..................................................................................... 6 
7. READ OPERATION ................................................................................................................................ 7 
8. WRITE OPERATION.............................................................................................................................. 8 
9. BUFOR.H HEADER FILE ...................................................................................................................... 9 

 


	DrBufor
	1. Bufor 
	2. Description of User Driver Resources 
	3. Process Variable Descriptors 
	4. BUFOR Driver Parameterization 
	5. Process Variable Declaration 
	6. Obtaining Access to Common Data 
	7. Read Operation 
	8. Write Operation 
	9. Bufor.h Header File  


