
User’s Manual for Asix

www.asix.com.pl

AsixConnect
Manual for operators

Doc. No ENP7065
Version: 2014-06-30

http://www.asix.com.pl/�

ASKOM® and Asix® are registered trademarks of ASKOM Spółka z o.o., Gliwice. Other brand names,
trademarks, and registered trademarks are the property of their respective holders.

All rights reserved including the right of reproduction in whole or in part in any form. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without prior written permission
from the ASKOM.

ASKOM sp. z o. o. shall not be liable for any damages arising out of the use of information included in the
publication content.

Copyright © 2014, ASKOM Sp. z o. o., Gliwice

ASKOM Sp. z o. o., ul. Józefa Sowińskiego 13, 44-121 Gliwice,
tel. +48 32 3018100, fax +48 32 3018101,
http://www.askom.com.pl, e-mail: office@askom.com.pl

http://www.askom.com.pl/�

iii

Table of Contents
1 Introduction .. 9

1.1 Package Components .. 10

1.2 Licensing .. 10

1.3 Requirements of the Asix System .. 10

1.4 Most Important Modifications in the Package .. 10

2 Installation as a Part of the Asix Package ... 12

3 Connection Configuration .. 13

3.1 Channels .. 13

3.2 How to Specify the Channel Name .. 13

3.3 Configuration File .. 14

3.4 Interactive Configuration .. 14

3.4.1 Configurator Program ... 14

3.4.2 Channel Management .. 16

3.4.3 Package Options ... 17

3.5 Program Configuration .. 17

3.6 Channel Options .. 19

3.6.1 Asix System Network .. 19

3.6.1.1 Asix System Network Configuration .. 19

3.6.1.2 Searching for Data Servers of the Asix System .. 20

3.6.1.3 Searching for Data Servers of the Asix System in Other Subnetworks 22

3.6.1.4 External List of Servers .. 23

3.6.2 Variable Definition Database .. 24

3.6.3 Current Data ... 26

3.6.4 Archival Data .. 27

3.6.5 Alarms ... 29

3.6.6 Reports ... 30

3.6.7 DDE and OPC Servers ... 31

4 Variable Definition Database .. 33

4.1 Variable Definition Database ... 33

4.2 Automation Server .. 33

4.2.1 Automation Server ... 33

4.2.2 Application of Server .. 34

4.2.3 LoadChannel Function .. 34

4.2.4 Init Function ... 34

4.2.5 ReadAttribute Function .. 35

4.2.6 SelectAttribute Function .. 35

AsixConnect

iv

4.2.7 SelectVar Function .. 36

4.2.8 SelectVars Function .. 36

4.3 Server .NET .. 37

4.3.1 ServerVB Class .. 37

4.3.1.1 Application of Server ... 37

4.3.1.2 ServerVB Designer ... 37

4.3.1.3 Dispose Function ... 38

4.3.1.4 Init Function .. 38

4.3.1.5 ReadAttributes Function ... 38

4.3.1.6 ReadAttributesN Function ... 39

4.3.1.7 Operation in ASP.NET Environment .. 39

4.3.2 ServerVBUI Class ... 40

4.3.2.1 Application of Server ... 40

4.3.2.2 ServerVBUI Designer ... 41

4.3.2.3 Dispose Function ... 41

4.3.2.4 Init Function .. 42

4.3.2.5 SelectVar Function ... 42

4.3.2.6 SelectVars Function ... 42

4.3.2.7 SelectAttribute Function ... 43

5 Measurement Status Description ... 44

5.1 Measurement Status Description .. 44

5.2 Measurement Quality ... 44

5.3 Quality Bit Field ... 45

5.4 Substatus Bit Field for Bad Quality .. 46

5.5 Substatus Bit Field for UNCERTAIN Quality ... 46

5.6 Substatus Bit Field for GOOD Quality .. 47

5.7 Limit Bit Field ... 47

5.8 Vendor Bit Field ... 48

5.9 Archive Data Bit Fields ... 48

6 Current Data ... 50

6.1 Identifiers .. 50

6.2 Operation Without Variable Definition Database ... 52

6.3 Defining Write Rights .. 53

6.3.1 Simple Write Function .. 53

6.3.2 Extended Write Function .. 54

6.4 Automation Server .. 55

6.4.1 Automation Server ... 55

6.4.2 Application of Server .. 55

Table of Contents

v

6.4.3 LoadChannel Function .. 56

6.4.4 Init Function ... 56

6.4.5 Read Function ... 56

6.4.6 SetItemActive Function .. 58

6.4.7 Write Function .. 58

6.4.8 WriteEx Function .. 59

6.4.9 Active Property ... 59

6.4.10 ServerState Property .. 59

6.4.11 StartTime Property ... 60

6.4.12 DataChange Event .. 60

6.4.13 Error Handling .. 60

6.5 DDE Server ... 61

6.5.1 DDE Server .. 61

6.5.2 Application of Server .. 61

6.5.3 DDE Operations Supported by the Server .. 62

6.5.4 Format of Transferred Data .. 63

6.5.5 Transfer of Error Information ... 64

6.5.6 Using the DDE Server in Excel .. 64

6.5.7 'DDE Server' Service .. 65

6.6 OPC Server ... 69

6.6.1 Technical Specification ... 69

6.6.2 Details of Implementation .. 69

6.6.2.1 Introduction ... 69

6.6.2.2 OPC Server Object ... 69

6.6.2.3 Browsing of Variable Definition Database .. 70

6.6.2.4 Browsing Variable Properties .. 71

6.6.2.5 Variable Access Path .. 71

6.6.2.6 Process Variables ... 71

6.6.2.7 Synchronous Operations ... 72

6.6.2.8 Asynchronous Operations ... 72

6.6.2.9 Writing New Value, Quality and Time Stamp .. 72

6.7 .NET Server .. 73

6.7.1 Application of Server .. 73

6.7.2 ServerCT Designer .. 73

6.3.2 Dispose Function .. 74

6.7.4 Init Function ... 74

6.7.5 Read Function ... 74

6.7.6 Write Function .. 76

AsixConnect

vi

6.7.7 Write Function - Extended Write Operation .. 76

6.7.8 ItemState Structure .. 77

6.7.9 SetItemActive Function .. 78

6.7.10 ItemsChange Event ... 78

6.7.11 Active Property ... 79

6.7.12 Operation in ASP.NET Environment ... 79

7 Archive Data ... 81

7.1 Identifiers .. 81

7.2 Operation Without Variable Definition Database ... 81

7.3 Aggregates ... 82

7.3.1 Description of Aggregates .. 82

7.3.2 Askom Algorithm .. 83

7.3.3 OPC Algorithm .. 83

7.3.4 Raport Algorithm .. 84

7.4 OPC Time Format ... 84

7.5 Automation Server .. 85

7.5.2 Application of Server .. 86

7.5.3 LoadChannel Function .. 86

7.5.4 Init Function ... 86

7.5.5 ReadRaw Function .. 87

7.5.6 ReadProcessed Function .. 87

7.6 OLE DB Server .. 88

7.6.1 OLE DB Server ... 88

7.6.2 Identification and Configuration .. 88

7.6.3 Tables ... 90

7.6.4 asix.SQL Queries ... 90

7.5.6 Examples of Queries ... 92

7.7 NET Server ... 94

7.7.1 Application of Server .. 94

7.7.2 ServerHT Designer .. 94

7.7.3 Dispose Function .. 95

7.7.4 Init Function ... 95

7.7.5 ReadRaw Functions .. 95

7.7.6 ReadProcessed Functions ... 96

7.7.7 ReadProcessedAsString Function ... 98

7.7.8 RelativeDateTime Function .. 99

7.7.9 RelativeTimeSpan Function .. 99

7.7.10 ReadRawResult Class .. 99

Table of Contents

vii

7.7.11 ReadProcessedResult Class .. 100

7.7.12 ReadProcessedAsStringResult Class ... 101

7.7.13 ItemSample Structure .. 102

7.7.14 ItemStringSample Structure ... 103

7.7.15 ItemProcessedSample Structure .. 103

7.7.16 DataSet Object .. 105

7.7.17 Operation in ASP.NET Eenvironment ... 106

8 Alarms ... 108

8.1 .NET Server .. 108

8.1.1 Application of Server .. 108

8.1.2 ServerAL Designer .. 108

8.1.3 Dispose Function .. 109

8.1.4 Init Function ... 109

8.1.5 ReadActive Functions ... 109

8.1.6 ReadHistorical Functions .. 111

8.1.7 Alarms2DataSet Function ... 111

8.1.8 Alarm Structure .. 112

8.1.9 Operation in ASP.NET Environment ... 113

9 Reports ... 114

9.1 .NET Server .. 114

9.1.1 Application of Server .. 114

9.1.2 Configuration of Report Definition Files ... 114

9.1.3 ServerRP Designer .. 115

9.1.4 Dipsose Function .. 115

9.1.5 Init Function ... 116

9.1.6 GetReportsInfo Function .. 116

9.1.7 ReadReportsInfo Function .. 117

9.1.8 GetDefFilesInfo Function .. 117

9.1.9 ReadDefFilesInfo Function ... 117

9.1.10 GetReportsDirectoryPath Function .. 117

9.1.11 ReportInfoNet Structure .. 118

9.1.12 DefFileInfoNet Structure .. 119

9.1.13 Operation in ASP.NET Environment ... 119

10 Web Service Server ... 121

10.1 Web Service Server .. 121

10.2 Installation ... 121

10.3 Web.Config Configuration File .. 121

10.4 Clients .. 122

AsixConnect

viii

10.4.1 Internet Explorer .. 122

10.4.2 WebForm Application .. 122

10.5 Variable Definition Database ... 123

10.6 Current Data .. 124

10.7 Raw Archive Data .. 125

10.8 Aggregated Raw Data .. 125

10.9 Active Alarms ... 126

10.10 Historical Alarms .. 127

11 Diagnostics of Server Operation ... 128

11.1 Logs .. 128

11.2 Error Codes .. 128

11.3 DDE Server ... 130

9

1 Introduction

The AsixConnect is a package of servers that extends scope of applications of the Asix package such
as monitoring and computer supervision of industrial processes.

Computer provided with physical link to controller (with use of serial line, industrial network or local
area network) is a source of information on process variables for other computers in the local area
network. Such a computer is a server of current and archive data. The access to that data is enabled
with intermediation of AsixConnect package.

AsixConnect package includes OPC, Automation, .NET and DDE servers that enable access to current
process variables in the database of Asix applications as well as Automation, .NET and OLE DB servers
enabling access to archive values of process variables and .NET server providing data on alarms. In
addition, the package includes Web Service server providing any types of data in Asix system
applications in the XML Web Services standard.

Each program of Windows environment provided with Automation, OPC, .NET or DDE mechanism
can cooperate with application of Asix program with intermediation of AsixConnect package servers.
Such a program may be both the client of data from industrial process and the source of data for
upper level control or configuration. In other words, with that method in Windows environment, the
current values of process variables are accessible on-line as well as their historical values, i.e.
registered trends. Example applications provided with Automation and DDE mechanisms of data
exchange are components of Microsoft Office package [Excel and Access. The applications
developed using these products and AsixConnect package may effectively enrich the computer
supervisory systems. These applications may be used for data analyses and presentations, model
tests, specialist reporting or creation of process databases.

AsixConnect is an integral part of Asix package but it is also accessible as a separate product for
application on PC stations connected to the local area networks and having access to data servers
provided with Asix packages. In this case AsixConnect makes access in Windows environment to the
data imported from remote computer stands provided with links to process controllers.

AsixConnect is the main element of open system strategy of Asix package in its applications in
Windows 2003, XP, 2000 and NT4 environments.

In the following chapters of this manual, the installation of AsixConnect program and methods of
access to process variables are described. The user of this manual should have the basic knowledge
of Automation, OLE DB, OPC, DDE, NET and XML Web Services mechanisms.

AsixConnect

10

1.1 Package Components

AsixConnect package is distributed as a component of Asix system or as an independent package.
AsixConnect includes the following servers:

• current data servers: .NET, Automation, OPC, DDE,
• archive data servers: .NET, Automation, OLE DB,
• variable base servers: .NET, Automation,
• alarm servers: .NET.
• Web Service server,
• DDE service (installed as an option).

To run AsixConnect package servers HASP asix or HASP AsixConnect key is required. In both cases in
the key, the flag Version 4 has to be activated.

1.2 Licensing

Licensing of AsixConnect package is discussed in the commercial information brochure.

1.3 Requirements of the Asix System

When AsixConnect package servers operate with Asix system working on the same computer, all
types of Asix system licences are supported. When Asix system works on another computer, all
versions of Asix system licences are supported (including the former versions working under DOS
operating system), but the required type of Asix system licence is operator server (symbol WAxS).

1.4 Most Important Modifications in the Package

Version 7.0

• Adding support for long variable names.
• Adding support for combined variable definition databases. As the value of the parameter
ItemsDatabase now you can specify multiple names of variable definition databases, separated by a
comma.

1 Introduction

11

Version 6.0

• Adding support for aggregated values calculated by using the Aggregator module (see more:
Asix.chm/pdf, 7.10 Aggregation of Archival Data).
• Adding the functions: SelectAlarm and SelectAlarms to the server .NET of a variable definition
database.

Version 5.0

• Adding support for variable definitions database.
• New statuses of archival data.

Version 4.0

• Extension of the package with .NET servers of current, archive and alarm data as well as Variable
Definitions Database.
• Extension of the package with Web Service server.
• Making it possible to define channels, i.e. independent sets of parameters for connections with
Asix system servers. Extension of package with external program for configuration of channel
parameters.
• Change in the system names of Automation servers, maintenance of operating compatibility with
the version 3.

12

2 Installation as a Part of the Asix Package

As a part of the Asix package, the user receives the AsixConnect package and can use both these
packages simultaneously on the same computer.

In order to install the AsixConnect package, the Asix package has to be installed (AsixConnect
components are an integral part of Asix).

13

3 Connection Configuration

3.1 Channels

The channel is a set of configuration options of AsixConnect package servers, options of connections
with the Asix system server and options of Variable Definition Database.

The channel named ’*’ is the basic channel of servers of the AsixConnect package. It is
created during the package installation and cannot be removed. The options of this channel are used
when the channel name will be:
• *;
• Null text;
• Text starting with ANY.

If a channel name defined using the Configurator program is used, the options of this channel will be
used.

If a channel name starting with NEW is used, no configuration options will be sent to the servers and
the client should send his own set of options using the mechanisms that are appropriate to this
server.

The use of undefined channel name other than the one specified above is an error.

3.2 How to Specify the Channel Name

The channel names are specified in individual servers of the AsixConnect package in the following
way.

Table: Methods of Specyfying the Channel Name in Individual Servers of the AsixConnect Package.

Server Type Method of Specifying the Channel Name
Automation
servers

Servers make LoadChannel function available. The channel name is the
function parameter.

Serwer DDE The channel name is topic of DDE connection.
Serwer OPC The channel name is variable access path.
Serwer OLE DB The channel name should be transferred in the Data Source parameter.
Serwery .NET The channel name is a parameter of .NET object designers.
.NET servers
designed in
 ASP.NET
environment by
the
SessionServer
function

The channel name is received from Web.Config file
- see below.

Serwer Web
Service

The channel name is received from Web.Config file.

AsixConnect

14

For storage of default channel name, the ASP.NET applications use the configuration file named
Web.Config. This file is located in the application directory. In order to define the default channel
name, the user should create the appSettings element in the configuration superior element. Then,
one add element should be created in the appSettings element and two attributes should be defined
in it. The first attribute should be named key and assigned the value ”DefaultChannelName”. The
latter attribute should be named value and its value should be the channel name. The channel name
should be put in quotation marks.

PRZYKŁAD:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 <appSettings>
 <add key=”DefaultChannelName” value=”AsEmis” />
 </appSettings>
&ldots;

3.3 Configuration File

The information on defined channels is stored in the ASIXConnect.ini file, in the directory the
AsixConnect package is installed in.

One should remember to make a copy of this file before installation of a new version of the Asix
package, as it will be overwritten during the installation.

3.4 Interactive Configuration

3.4.1 Configurator Program

In order to configure the channel options, the configurator program should be started from the
menu Start > Programs > Asix > AsixConnect > AsixConnect - Configurator. When started, this
program displays the main window - See: Fig. below.

3 Connection Configuration

15

Fig. The Configurator Window.

In the left-hand section of the window, the list of available operations is displayed. In the right-hand
section of the window, the list of defined channels is displayed. The channel named ’r;*’ exists all the
time.

AsixConnect

16

3.4.2 Channel Management

Fig. The Configurator Window.

Commands relating to the Channels group have the following meanings:

Create New Channel - enables creation of a new channel;
Delete Current Channel - enables removal of the currently highlighted channel;
Rename - enables change of the currently highlighted channel.

The name of the basic channel cannot be removed or changed.

3 Connection Configuration

17

3.4.3 Package Options

Location of the AsixConnect servers log files and directory of configuration files are defined with the
use of the options available from Architect program > Tools menu > Log and Configuration
Directories option:

Directory of Log Files - name of directory of log files created by AsixConnect servers;
Directory of Configuration Files - the directory contains AsixConnect.ini used for configuration of
OPC, Automation, DDE, .NET, AsPortal and AsWWW servers.

Fig. Log and Configuration Directories of AsixConnect servers.

3.5 Program Configuration

Most servers in the AsixConnect package provide the ability of program setting of their options. For
setting the options, a relevant function is called and the parameter of this function is transferred as a
text parameter:

Option1=Value1;Option2=Value2; ...

The number of Option=Value components is free. The components are separated with semicolons.

AsixConnect

18

The options are set in individual servers of AsixConnect package in the way in Table below.

Tabela: Method of Setting the Options - in Individual Servers of the AsixConnect Package.

 Server Type Method of Setting the Options
Automation servers

The Init function call.
.NET servers
DDE server The XTYP_POKE transaction call (write to DDE server). As

item parameter you should pass InitString. As data
parameter you should pass initialization text.
Programmatic option modification during a given
connection may have influence on options used in this
connection.

OPC server
Servers may used options of default channel only. OLE DB server

Web Service server

The required values of options may be text, number or logical value. For logical-type options, the
logical value of True may be yes, true or 1, while the logical value of False may be no, false or 0.

The sequence of options within the parameter makes any difference for sequence of their
interpretation. If an option with incorrect value is encountered, the initialisation process is
interrupted and error message is returned. Unknown options are ignored.

Options can be modified by program until the first operation on data is performed, i.e. readout, write
or variable activation.

3 Connection Configuration

19

3.6 Channel Options

3.6.1 Asix System Network

3.6.1.1 Asix System Network Configuration

Interactive Configuration

Fig. Log and Configuration Directories of AsixConnect Servers.

The option Names of data servers enables the name or names of Asix system servers to be defined.
Data will only be downloaded from the listed servers. The server names should be separated with
commas. By default, this option has no defined value, which means that any sever may be selected
from among the found ones. In order to enforce the local server is attached to only, the server name
should be defined as LOCAL.

The Asix system, which data are to be taken from via the local area network, must be of operator
server type (with WAxS symbol).
The client's computer name is defined in the way described below.

Table. Client Computer Name in the Asix System.

AsixConnect

20

Description of Client Software
Configuration

Client Computer Name in the Asix System

Only AsixConnect package is used and the
file aslink.ini was not created or the Name
line was not defined in the ASLINK section.
By default aslink.ini is in c:\AsixApp\cfg.

Name of a client computer in WINDOWS
plus period (.) at the end, e.g. for a
computer named ”r;r;CLI” its name in the
Asix system is ”r;r;CLI.”

Only the AsixConnect package is used and
ASIX.INI file was created, the Name line was
defined in the ASLINK section.

Name of a client computer in the Asix
system is provided inthe ASIX.INI file in the
ASLINK section, in the line titled Name.

AsixConnect and an Asix application run in
the same computer.

Name ofa client computer in the Asix
system is provided in the XML file of an Asix
application, in the Network Module group,
on the tab Computer name.

The other options are of advanced-type and usually they do not need modification. Their meaning is
described in 3.6.1.2 Searching for data servers of Asix system.

Program Configuration

Table. Asix System Network - Program Configuration.

Option Option Name for Interactive
Configuration

Type Default
Value

AsixServerName Data server names of the Asix
system

String Null (empty
string)

StopAfterFirstServerFound Stop search when first server
is found

Boolean Yes

FindServerTimeout Search for data
servers/Timeout

Integer 3000 [ms]

NetTimeout Connecting to server and data
exchange/Timeout

Integer 3000 [ms]

3.6.1.2 Searching for Data Servers of the Asix System

All the current, archive and alarm data servers of the AsixConnect package use the same algorithm of
searching for data servers of asix system applications.

3 Connection Configuration

21

In the first step, the servers of the AsixConnect package send a command to call every Asix system
server, which is attached to the local computer network and makes the specific resource (channel,
archive or alarm server) available to introduce. This query also regards the local server of the Asix
system. If computer, which the AsixConnect package is installed on, is not connected to the
computer network, the query regards the local server of Asix only. The time of waiting for response is
affected by the StopAfterFirstServerFound and FindServerTimeout options.

In the second step, one server is chosen from Asix servers that answered the query. Selection of the
server is affected by the AsixServerName option.

For details of the searching algorithm variants see the table below.

Table. Algorithm of Searching for Asix System Servers.

Item Value of
AsixServerName

Option

Server Searching Algorithm

1. no option (empty
string)
*

If an external list of servers was used, then the third
variant of server searching algorithm.

StopAfterFirstServerFound = yes

First responding server will be selected.

If connection with the server breaks, it is possible that new
connection with other server allowing access to the same
process data will be established.

StopAfterFirstServerFound = no

After time equal to FindServerTimeout one of responding
servers, according to following preferences (ordered by
importance) is selected:

1. Whether data source is not failed?

2. Whether server is a local one?

3. Whether server allows access to its own
data (is not a gateway)?

4. Whether it has the smallest number of
clients?

If connection with the server breaks, it is possible that new
connection with other server allowing access to the same
process data will be established.

AsixConnect

22

2. server_name AsixConnect package will be waiting for responding the
server of declared name for the time equal to
FindServerTimeout maximum.
If connection with the server breaks, the new connection
may be established with the same server only.

3. server_name1,
server_name2...
(list of server names,
separated with
semicolons)

Server of AsixConnect package will be waiting for
responding any server from declared list of names for the
time equal to FindServerTimeout maximum.

If connection with the server breaks, the new connection
may be established with any server from declared list of
names only.

4. LOCAL Server of AsixConnect package will be waiting for
responding the local server for the time equal to
FindServerTimeout maximum.

If connection with the server breaks, the new connection
may be established with the local server.

The default values of the options used when searching for data servers of Asix are as follows.

Table. Default Values of Options for Searching for Data Servers of the Asix System.

Option Name Default Value
StopAfterFirstServerFound Yes
FindServerTimeout 3000 [ms] (3 seconds)
AsixServerName no value (empty string)

3.6.1.3 Searching for Data Servers of the Asix System in Other Subnetworks

Standard searching data of Asix servers includes searching within one subnetwork. Devices within
one (common) subnetwork have the same initial part of a binary record of an IP address. The length
of this part determines the value of the subnetwork mask.
You have to configure the so-called "Connection via TCP/IP" to ensure searching on the data server
located in other network.

Table. Configuration of Connection via TCP/IP.

Description of Client Software Configuration Description of Configuration "Connection via

TCP/IP"
Only AsixConnect is used. Run the Architect program and select the

command Network Module - Options from the
Tools menu. There is the editor Connections Using
TCP/IP Protocol on the TCP/IP Communication tab.

3 Connection Configuration

23

AsixConnect and Asix are used on the same
computer.

Run the Architect program, open the file of Asix
system application and select the option group
Network Module. There is the editor Connections
Using TCP/IP Protocol on the TCP/IP
Communication tab.

3.6.1.4 External List of Servers

The external list of servers allows the list of admissible data servers to be specified individually for
every resource of the Asix system application. The external list of servers is used only if the name of
the server, which the data are to be taken from, is not provided explicitly in the channel
configuration. The list of servers is shared by all the channels.

The external list of servers is stored in the ASIXConnect.ini file, in the directory the AsixConnect
package is installed in. For every type of server, the section should be defined; every line in the
section should have the following form:

resource_name = server1_name, server2_name...

For names of the ASIXConnect.ini file sections corresponding to individual types of servers and
meaning of the resource_name element, see the following table.

Table. Names of the ASIXConnect.ini File Sections for Individual Types of Servers.

Server Type Section Name Meaning of
resource_name Element

Current data server AsixCTServers Channel name

Archive data server AsixHTServers Archive name

Alarm server AsixALServers Network name of alarm
server

The server names in the list are separated with a comma.

AsixConnect

24

3.6.2 Variable Definition Database

Interactive Configuration

Fig. AsixConnect Configurator - Channel Options - Variable Definition Base.

The option Variable definitions base is used for entering information on location of the Variable
Definitions Database containing definitions of variables of the Asix system application. As the option
value the path to the .mdb file or database location on SQL server should be specified in the
following notation:

<MSSQL server>/<database name>

It is possible to use combined databases of variables specifying the path to more than one database.
The paths should be separated by a comma.

The option Alias attribute name allows alternative names of variables to be used in clients of the
servers of AsixConnect package. The alternative names of variables must be stored in the Variable
Definitions Database as values of certain variable attribute; the name of this attribute must be
defined as the option value. If the option is used, the variables the alias attribute of which is not
defined, will be unavailable.

3 Connection Configuration

25

The alternative names of variables are also used by OPC server when reviewing its Variable Definition
Database using OPC mechanisms. However, one should remember that for review of the Variable
Definition Database, the base defined in the basic channel ’*’ is used only.

The alternative variable names are not

 supported by .NET servers.

Program Configuration

Table. Variable Definition Database - Program Configuration.

Option Option Name for
Interactive

Configuration

Type Default
Value

ItemsDatabase Variable definition
database

String null

AliasAttributeName Alias attribute name String null

AsixConnect

26

3.6.3 Current Data

Interactive Configuration

Fig. AsixConnect Configurator - Current Data Options.

The options Check control item and Check item limits allow verification of control variables and
verification of the limits of variables, similarly to verification carried out by the NUMBER and BAR
objects in the Asix system, to be enabled. By default, the options are off. When the channel is used
by dynamic HTML pages, these options must be checked.

To enable verification, the relevant check boxes should be checked. In order for verification to be
carried out, the Variable Definition Database must contain the appropriate attributes in which testing
algorithms will be defined. It regards the same attributes that are used in configuration of the
NUMBER and BAR objects in the Variable Definition Database.

For information about the attributes, see the Asix system documentation (Architect.chm/pdf).

3 Connection Configuration

27

Program Configuration

Table. Program Configuration of Current Data.

Option Meaning Type Default
Value

CheckControlVariables Check control item Boolean No
CheckLimits Check item limits Boolean No

3.6.4 Archival Data

Interactive Configuration

Fig. AsixConnect Configurator - Archival Data Options (1).

AsixConnect

28

Fig. AsixConnect Configurator - Archival Data Options (2).

The options of aggregates calculation allows the required type of algorithm to be defined. Algorithms
are described in 7.3.1 Description of Aggregates.

Program Configuration

Table. Program Configuration of Archival Data - Names of Options.

Option Meaning Type Default
Value

AggregateMode Select algorithm for aggregate
calculation; 0 - ASKOM algorithm,
1 - OPC algorithm, 2 - Report
algorithm

Integer 0

3 Connection Configuration

29

QualityGoodThreshold Treshold of good quality Integer 80

3.6.5 Alarms

Interactive Configuration

Fig. AsixConnect Configurator - Alarm Options.

If the client uses the alarm server of the AsixConnect package, it is necessary to specify the value of
the Network name of alarms server option. The network name of the alarm server is defined in the
Asix application configuration file (for older versions of Asix application parameterized in .ini files: in
the section ALARM_SYSTEM, in the line RESOURCE_NETWORK_NAME; for applications
parameterized with the use of Asix ver. 5 (and upper) in .xml files, using the Architect program: in the
parameter Network name of alarms set in the Alarms System parameter group of Architect). The
alarms are available only when the network name is defined in the application and the alarm system
works in the operator mode.

AsixConnect

30

Program Configuration

Tab. Program Configuration of Alarm Data.

Option Meaning Type Default
Value

AlarmsSystemNetworkName Network name of alarms server String null (empty
string)

3.6.6 Reports

Interactive Configuration

Fig. AsixConnect Configurator - Asix Report Options.

The Reports Direcotory Path of Asix System option allows to enter the information on directory the
report definition files and Asix application reports are stored in.

In the Path of Application File field the full path to an Asix application configuration file should be
passed.

3 Connection Configuration

31

Program Configuration

Table. Program Configuration of Report Data - Names of Options.

Option Meaning Type Default Value
ReportsDirectory Path to the directory of Asix system

reports
Text Null

IniFilePath Path to the configuration file of an
Asix system application

Text Null

3.6.7 DDE and OPC Servers

Interactive Configuration

Fig. AsixConnect Configuration - DDE Server Options.

By default, DDE server sends either the variable value or the error message in the form of a text-type
error description. The option Long format (4 columns) allows sending of detailed information on the
current variables by DDE server to be enabled: the readout status, value, quality and time stamp are
defined individually.

If the option Column separator - tab ’\t’ is disabled, the way of column distribution in data tables is
changed. Instead of tabulation mark, the list separator defined in the settings of the operating
system is used. By default, for Polish language it is semicolon ’;’.

The options of the Decimal separator is dott ’.’ group control the method of separating the decimal
parts in real numbers sent from and to DDE server. The option During read and refresh is by default

AsixConnect

32

disabled, which means that when the current and archive data are being read out and the current
data are being updated, the decimal symbol defined in the operating system settings is used. By
default, for Polish language it is comma ’,’. The option During write is by default enabled, which
means that when the current data are being saved, the decimal part is separated with a point. The
reason for adoption of this default value is the fact that Excel always uses the point as a decimal
symbol when saving data into DDE server.

Fig. AsixConnect Configuration - OPC Server Options.

The option OPC attributes visible as variables change the way of reviewing the Variable Definition
Database using OPC mechanisms, which are made available by OPC server. By default, when this
option is disabled, the branches of the tree that represent the Variable Definition Database are the
groups of variables, while the leaves are individual variables. If this option is enabled, the internal
branches of the tree are the groups of variables, while the external branches are individual variables.
The leaves are the attributes of variables, such as value, description, unit, upper range and bottom
range.

Program Configuration

Tab. Program Configuration of DDE and OPC Server Data - Names of Options.

Option Meaning Type Default
Value

DataFormatIsLong Long format (4 columns) Boolean No

ColumnSeparatorIsTab Column separator - tab ’\t’ Boolean Yes

DecimalSymbolWhenReadIsDot Decimal separator is dot ’.’

During read and refresh

Boolean No

DecimalSymbolWhenWriteIsDot Decimal separator is dot ’.’

During write

Boolean Yes

33

4 Variable Definition Database

4.1 Variable Definition Database

In the Asix system the variable definition database is the space for storing of all information on
process variables. Each variable identified by unique Name is assigned to one record in the variable
definition database; the fields of this record contain the values of so-called variable attributes. The
attribute list includes mandatory, optional and user-defined items. The mandatory attributes are e.g.
variable description unit, channel number for communication with the object, archiving parameters.
The optional attributes are e.g. limits, format, ranges. Furthermore, the user may also create their
own text attributes, individual for each project, e.g. KKS or assembly data.

Variable Definition Database (VarDef) supports Microsoft SQL Server 2000 (and upper) databases and
MDB (Jet/Microsoft Access) databases. In order to migrate the application from earlier Asix versions,
the variable definitions may be converted from Paradox database or text files to the MSQL or Jet
database. The Architect module provides a full support of VarDef database in Jet or MS SQL format.

Programs included in the Asix system receive from variable definition database (VarDef) all the
attributes required to display technological diagrams. However, for the operator or designer, who
wants to review a variable definition database, viewing the entire database - all variables at the same
time is uncomfortable. The way of displaying VarDef parts including interrelated variables is needed.
Therefore, the possibility of grouping variables, naming the groups and arranging the groups in the
hierarchical structure has been implemented in VarDef. Grouping of variables is based on assigning
variables to any number of groups identified by a grouping attribute added to Scheme Editor. (See:
Architect - User's Manual, Variable Grouping).

4.2 Automation Server

4.2.1 Automation Server

Automation server of Variable Definition Database enables access to Variable Definition Database of
the Asix system application with use of Automation mechanism. Automation server is in-process
server implemented in form of DDL dynamic library and executed in client memory space. It is
registered in Windows operating system as an object named XConnect.ServerVB. Detailed
description of the functions, properties and constants accessed by this object is given later in this
chapter. The server also registers in the operating system its own library of types named AsixConnect
Type Library.

Automation server of the current data complies with Automation mechanism and may be used in
programming languages handling the Automation mechanism. These languages are Visual Basic,
Visual Basic for Applications (e.g. from Microsoft Office package) or Visual Basic Script.

When converting Visual Basic application that uses the AsixConnect package in version 3, the name
of the server object ServerBZ.App should be changed into XConnect.ServerVB. When converting

AsixConnect

34

Visual Basic application that uses the AsixConnect package in version 6, the name of the server object
XConnect11.ServerVB should be changed into XConnect.ServerVB. When converting Visual Basic
application that uses the AsixConnect package of any version, the name of the currently used library
of types should be changed into AsixConnect Type Library.

4.2.2 Application of Server

When you are going to perform operations on the Variable Definition Database with use of
Automation server, you should carry out the following steps.

• Install AsixConnect package.
• Obtain the Variable Definition Database of the Asix application from which the current data
are to be retrieved or generate such a base.
• Using configurator program, configure the basic channel or establish and configure your own
channel.
• Develop a program operating on XConnect.ServerVB server. In this program, you need to:

o create an object of XConnect.ServerVB type,
o call the LoadChannel function, giving as parameter the name of the previously configured
channel,
o using the procedures SelectVar and ReadAttribute, execute the variable selection and
attribute readout.

All parameters of the server function are of VARIANT type.

Rather than using channels, the Variable Definition Database may also be loaded using the Init
function.

4.2.3 LoadChannel Function

Function calling syntax:

LoadChannel ChannelName

This function is used for initialization of XConnect.ServerVB object by loading the channel. As the
ChannelName parameter the channel name should be given (see: 3. Connection Configuration).

4.2.4 Init Function

Function calling syntax:

Init InitString

This function is designed for setting server parameters. For description, see 3.4.1.Configurator
Program, and for available options, see 3.6.2. Variable Definitions Database.

4 Variable Definition Database

35

4.2.5 ReadAttribute Function

Function calling syntax:

ReadAttribute (VarNamej, AttributeName)

The ReadAttribute function returns the value of a variable attribute.

As the VarNamej parameter the variable name should be passed.

As the AttributeName parameter the attribute name or one of constants defined by the Automation
server should be passed (constants listed in the table below).

Table. Constants Defined by Automation Server.

Name of Constant Meaning
atrDescription Variable description
atrEU Measuring unit
atrRangeLo Lower measuring range
atrRangeHi Upper measuring range
atrSampleRate Sampling rate
atrArchiveRate Archiving rate

4.2.6 SelectAttribute Function

Function calling syntax:

SelectAttribute (SelectedAttributeName)

The SelectAttribute function is designed for interactive selection of an attribute name by the user.
When called, the dialog box is displayed and it contains a list of variable attribute names defined in
the Variable Definition Database. The user can choose one of them and accept the selection by
clicking on the OK button or cancel the selection by clicking on the Cancel button.

The SelectAttribute function returns the true value if the user has accepted the selection by clicking
on the OK button or the false value if the user has cancelled the selection by clicking on the Cancel
button.

The SelectedAttributeName is an input-output parameter. If on entry it contains the attribute name,
then this attribute will be highlighted after the attribute selection window has been displayed. If on
output the SelectAttribute function has returned the true value, the parameter contains the name of
the selected attribute.

AsixConnect

36

4.2.7 SelectVar Function

Function calling syntax:

SelectVar (SelectedVarName)

The SelectVar function is designed for interactive selection of a variable name from Variable
Definition Database by the user. When called, the dialog box is displayed and it contains a list of
variable names defined in the Variable Definition Database. The user can choose one of them and
accept the selection by clicking on the OK button or cancel the selection by clicking on the Cancel
button.

The SelectVar function returns the value true if the user has accepted the selection by clicking on the
OK button or the false value if the user has cancelled the selection by clicking on the Cancel button.

The SelectedVarName is an input-output parameter. If on entry it contains the name of a variable,
then this variable will be highlighted after the variable selection window has been displayed. If on
output the SelectVarName function has returned the true value, the parameter contains the name of
the selected variable.

4.2.8 SelectVars Function

Function calling syntax:

SelectVars (SelectedVarsNames)

The SelectVars function is designed for interactive selection of variable names from Variable
Definitions Database by the user. When called, the dialog box is displayed and it contains a list of
variable names defined in the Variable Definition Database. The user can choose one or more of
them and accept the selection by clicking on the OK button or cancel the selection by clicking on the
Cancel button.

The SelectVars function returns the value true if the user has accepted the selection by clicking on
the OK button or the value false if the user has cancelled the selection by clicking on the Cancel
button.

The SelectedVarNames is an output parameter. If on output the SelectVars function has returned the
true value, the parameter contains the table of the names of selected variables.

4 Variable Definition Database

37

4.3 Server .NET

4.3.1 ServerVB Class

4.3.1.1 Application of Server

The ServerVB class enables access to the functional part of the Asix system to read out the data from
the Variable Definition Database. When you are going to perform operations on the Variable
Definition Database with use of ServerVB, you should carry out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of the Asix system from which the current data are to
be retrieved or generate such a base.
• Using Configurator program, configure the basic channel or establish and configure your own
channel.
• Generate the project in Visual Studio package and then:

o highlight the References directory in the project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet.dll file in the
c:\asix subdirectory, click on OK and close the Add Reference window. In every file with the
C# source code, the following line should be added in the using declaration area:

using XConnectNet;

• Develop a program operating on object of ServerVB class. In this program, you need to:
o create object of the ServerVB type, giving as the parameter the name of the previously
configured channel,
o using the component functions of the Read* server, activate data readout;
o during data exchange, you should remember about handling of exceptions as they may be
reported by the server;
o after the use of ServerVB object has been finished, call its component function Dispose;
o during data exchange, you should remember about handling of exceptions as they may be
reported by the server.

4.3.1.2 ServerVB Designer

 [C#]
public ServerVB(
 string channelName);

This function is used to create and initiate the object of the ServerVB class.

As the channelName parameter, the channel name should be given (see: 3. Connection
Configuration).

AsixConnect

38

4.3.1.3 Dispose Function

 [C#]
public void Dispose();

This function is used for releasing the resources used by ServerVB object. This function must be called
after the use of the ServerVB object has been finished. Calling should take place from the same
thread the object was created in.

4.3.1.4 Init Function

 [C#]
public void Init(
 string initString);

This function is designed for setting server parameters. For description of the function, see 3.5.
Program Configuration, and for available options, see 3.6.2. Variable Definition Database.

4.3.1.5 ReadAttributes Function

 [C#]
public string[] ReadAttributes(
 string varName,
 string[] attributeNames);

The ReadAttributes function is used for reading out the values of variable attributes.

As the varName parameter the variable name should be passed.

As the VarNames parameter the table of attribute names should be passed.

As a result, the function returns the table of the texts containing the attribute values.

4 Variable Definition Database

39

4.3.1.6 ReadAttributesN Function

 [C#]
public string[,] ReadAttributesN(
 string[] varNames,
 string[] attributeNames);

The ReadAttributesN function is used for reading out the values of attributes of a few variables at
once.

As the varNames parameter the table of variable names should be passed.

As the VarNames parameter the table of attribute names should be passed.

As a result, the function returns the two-dimensional table of the texts containing the attribute
values. In the first row, there are attributes of the first variable, in the second - attributes of the
second variable, etc.

4.3.1.7 Operation in ASP.NET Environment

In case of operation in ASP.NET Environment, the object should be created using the
ServerVB.ServerPool.Get() expression. The ServerPool object is a static field of the ServerVB class and
it implements the pool of current data servers. Using the Get function, every time before generation
of the page the ServerVB object should be retrieved. Declaration of the Get function is as follows:

[C#]
public ServerVB Get ();

After the generation has been completed, the server must be returned to the pool with use of the
ServerVB.ServerPool.Release() expression. As the Release function parameter the server returned to
the pool should be passed. Declaration of the Release function is as follows:

[C#]
public Release (ServerVB server);

The server may also be taken from the pool in the beginning of each function and returned in the end
of the function. To ensure that each server is returned to the pool, the main code of the function
must be included in the try block and the server should be returned to the pool in the finally block.

EXAMPLE

private void Page_Load(object sender, System.EventArgs e)
{
 ServerVB server = null;

AsixConnect

40

 try
 {
 server = ServerVB.ServerPool.Get();
 // function code
 }
 catch(Exception e)
 {
 // handling of exceptions reported when getting the server
from the pool and
 // during the function operation
 }
 finally
 {
 if (server != null)
 ServerVB.ServerPool.Release(server);
 } }

Pool of servers:

• creates several objects of the ServerVB class for the application (the channel name is retrieved
from Web.Config file, see: 3.2. How to Specify the Channel Name),
• stores the objects in cache memory of an ASP.NET application,
• makes the objects available for successive calls under an ASP.NET application,
• reports the PoolApplicationException exception when the pool of servers has reached its
maximum size and there is no free server.

4.3.2 ServerVBUI Class

4.3.2.1 Application of Server

The ServerVBUI class enables access to the functional part of the Asix system to select variables from
Variable Definition Database and select attributes from Variable Definition Database. When you are
going to perform operations on the Variable Definition Database with use of ServerVBUI, you should
carry out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of the Asix system from which the current data are to
be retrieved or generate such a base.
• Using the Configurator program, configure the basic channel or establish and configure your
own channel.
• Generate the project in the Visual Studio package and then:

o highlight the References directory in the Project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet file in the
c:\asix subdirectory, click on the OK and close the Add Reference window. In every file with
the C# source code, the following line should be added in the using declaration area:

4 Variable Definition Database

41

using XConnectNet;

• Develop a program operating on an object of the ServerVBUI class. In this program, you need
to:

o create object of the ServerVBUI type, giving as a parameter the name of the previously
configured channel,
o using the component functions of the Select* server, activate data exchange;
o during data exchange, you should remember about handling of exceptions as they may be
reported by the server;
o after the use of the ServerVBUI object has been finished, call its component function
Dispose.

4.3.2.2 ServerVBUI Designer

 [C#]
public ServerVBUI(
 string channelName);

This function is used to create and initiate the object of the ServerVBUI class.

As the channelName parameter, the channel name should be given (see: 3. Connection
Configuration).

4.3.2.3 Dispose Function

 [C#]
public void Dispose();

This function is used for releasing the resources used by the ServerVBUI object. This function must be
called after the use of the ServerVBUI object has been finished. Calling should take place from the
same thread the object was created in.

AsixConnect

42

4.3.2.4 Init Function

 [C#]
public void Init(
 string initString);

This function is designed for setting server parameters. For description, see 3.5. Program
Configuration, and for available options, see 3.6.2. Variable Definitions Database.

4.3.2.5 SelectVar Function

[C#]
public bool SelectVar (
 IntPtr parentWindowHandle,
 ref string selectedVarName);

The SelectVar function is designed for interactive selection of a variable name from Variable
Definition Database by the user. When called, the dialog box is displayed and it contains a list of
variables defined in the Variable Definition Database. The user can choose one of them and accept
the selection by clicking on the OK button or cancel the selection by clicking on the Cancel button.

The SelectVar function returns the value true if the user has accepted the selection by clicking on the
OK button or the value false if the user has cancelled the selection by clicking on the Cancel button.

The parentWindowHandle is an input parameter. As the value of this parameter the handle of the
window, which the function has been called from, should be passed. For objects of the Form class,
the window handle returns the value Handle.

The selectedVarName is an input-output parameter. If on entry it contains the name of a variable,
then this variable will be highlighted after the variable selection window has been displayed. If on
output the SelectedVarName function has returned the true value, the parameter contains the name
of a selected variable.

4.3.2.6 SelectVars Function

[C#]
public bool SelectVars(
 IntPtr parentWindowHandle,
 ref string[] selectedVarNames);

4 Variable Definition Database

43

The SelectVars function is designed for interactive selection of variable names from Variable
Definition Database by the user. When called, the dialog box is displayed and it contains a list of
variable names defined in the Variable Definition Database. The user can choose one or more of
them and accept the selection by clicking on the OK button or cancel the selection by clicking on the
Cancel button.

The SelectVars function returns the value true if the user has accepted the selection by clicking on
the OK button or the value false if the user has cancelled the selection by clicking on the Cancel
button.

The parentWindowHandle is an input parameter. As the value of this parameter the handle of the
window, which the function has been called from, should be passed. For objects of the Form class,
the window handle is stored in the property of Handle.

The selectedVarName is an output parameter. If on output the selectedVarName function has
returned the true value, the parameter contains the table of the names of selected variables.

4.3.2.7 SelectAttribute Function

 [C#]
public bool SelectAttribute(
 IntPtr parentWindowHandle,
 ref string selectedAttributeName);

The SelectAttribute function is designed for interactive selection of an attribute name by the user.
When called, the dialog box is displayed and it contains a list of variable attribute names defined in
the Variable Definitions Database. The user can choose one of them and accept the selection by
clicking on the OK button or cancel the selection by clicking on the Cancel button.

The SelectAttribute function returns the value true if the user has accepted the selection by clicking
on the OK button or false, if the user has cancelled the selection by clicking on the Cancel button.

ParentWindowHandle is an input parameter. As the value of this parameter the handle of the
window, which the function has been called from, should be passed. For objects of the Form class,
the window handle is stored in the property Handle.

SelectedAttributeName is an input-output parameter. If on entry, it contains the name of attribute,
then this attribute will be highlighted after the attribute selection window has been displayed. If on
output the SelectAttribute function has returned the true value, the parameter contains the selected
attribute name.

44

5 Measurement Status Description

5.1 Measurement Status Description

The measurement status is described by the following threesome: time stamp, quality and value.
Depending on the server, the threesome may be presented as a structure, three parameters or a text
in which the elements are separated with a separator mark.

The time stamp is expressed in the natural format for a specific server. The time is always provided
as the local time (except for OPC Server where the UTC time is used).

The quality is provided as a 16-bit number (in case of the current data servers) or 32-bit number (in
case of the archive data servers). In this number, the meaning of bits complies with the OPC 2.05
specification. Description of bits is provided in the chapters below.

The measurement value may take one of the following types:
• 16-bit number with or without a sign,
• 32-bit number with or without a sign,
• single- or double-precision real number,
• text,
• table of numbers.

5.2 Measurement Quality

The quality element represents the quality of the measurement value status.

The lower 8 bits (bits 0-7) of the quality flag are defined as three-bit fields: Quality, Substatus and
Limit; the bits are arranged as follows:

QQSSSSLL

Bits 8-15 of the quality flag are remained to be used by the software originators. These bits are
defined as the Vendor bit field.

5 Measurement Status Description

45

5.3 Quality Bit Field

Table. Quality Bit Field.

QQ Value of Bits Definition Description
0 00SSSSLL (0x00) Bad The value is not available; details in

the Substatus field.
1 01SSSSLL (0x40) Uncertain The quality of a variable is uncertain;

details in the Substatus field.

An uncertain value is treated as
”almost” bad in an Asix system
application. The way of displaying the
variable with the uncertain value is
the same as for the value with the
bad value and the value of the
Substatus field equal to Last Known
Value.

2 10SSSSLL N/A Is not used by OPC.

3 11SSSSLL (0xC0) Good The value quality is good.

It is recommended that the client should verify at least the contents of the Quality bit field.
Verification usually takes place by carrying out the bit product operation for the Quality field and the
mask of the Quality bit field with the value of 0xC0. The result is compared to Bad, Uncertain and
Good constants, like in the following example (C/C++/C# language):

int q = Quality & 0xC0;
if (q == 0x00)
{
 // bad quality
}
else
if (q == 0x40)
{
 // uncertain quality
}
else
{
 // good quality.
}

AsixConnect

46

5.4 Substatus Bit Field for Bad Quality

Table. Substatus Bit Field for Bad Quality.

SSSS Value of Bits Definition Description
0 000000LL (0x00) Non-specific The value is bad, but the reason is

unknown.
1 000001LL (0x04) Configuration

Error

There is the problem with server
configuration.

2 000010LL (0x08) Not Connected It is demanded the entry to be
logically joined - but it is not. The
data source has not provided the
value.

3 000011LL (0x0C) Device Failure Device failure is detected.

4 000100LL (0x10) Sensor Failure Sensor failure is detected. The
quality is signalized by the driver of
the device or by the control
variable (in the second possibility -;
only when Check control items is
set).

5 000101LL (0x14) Last Known Value Communication error. The last
variable is available. ”Age” of value
is defined by its time stamp.

6 000110LL (0x18) Comm Failure Communication error. The last
variable is available.

7 000111LL (0x1C) Out of Service Block is not deleted or is blocked. It
is also used when inactive variable
is read.

8-15 N/A Is not used by OPC.

5.5 Substatus Bit Field for UNCERTAIN Quality

Table. 'Substatus' Bit Field for UNCERTAIN Quality.

SSSS Value of Bits Definition Description
0 010000LL (0x40) Non-specific The value is uncertain but the reason of

this situation is unknown.
1 010001LL (0x44) Last Usable

Value

The device stopped reading the
variable values. The value should be
treated as stale.

2-3 N/A It is not used by OPC.

5 Measurement Status Description

47

4 010100LL (0x50) Sensor Not
Accurate

Either the value exceeded some of the
sensor limits nor the sensor is out of
calibration.

5 010101LL (0x54) Engineering
Units Exceeded

The value exceeded limits defined for
the measurement.

6 010110LL (0x58) Sub-Normal The value is defined on the basis of
several sources and the number of
available sources is less than
demanded number.

7-15 N/A It is not used by OPC.

5.6 Substatus Bit Field for GOOD Quality

Table. 'Substatus' Bit Field for GOOD Quality.

SSSS Value of Bits Definition Descriotion
0 110000LL(0xC0) Non-specific The value is good.

1-5 N/A It is not used by OPC.

6 110110LL(0xD8) Local Override The value was overwritten. That usually
means that entry was disconnected and
a new value was written manually.

7-15 N/A It is not used by OPC.

5.7 Limit Bit Field

The Limit field is valid regardless of the contents of Quality and Substatus fields.

Table. 'Limit' Bit Field.

LL Value of Bits Definition Description
0 QQSSSS00 (0x00) Not Limited The value may increase and decrease.

1 QQSSSS01 (0x01) Low Limited The value exceeded the lower limit.

2 QQSSSS10 (0x02) High Limited The value exceeded the upper limit.

3 QQSSSS11 (0x03) Constant The value is constant and can not change.

AsixConnect

48

When reading the values of the current variable from the Asix system, the Limit bit field usually takes
the value Not Limited. If the current data server option Verify limits of variables is enabled, then the
values Low Limited or High Limited will appear after the warning limits are exceeded. When the
alarm limits are exceeded, then additionally the Second Limit flag in the Vendor bit field is activated.

When reading the values of the variable attributes from the Variable Definitions Database, the Limit
bit field always takes the value Constant.

5.8 Vendor Bit Field

The servers of the AsixConnect package use one flag from this field. Its name is Second Limit.

Table. 'Second Limit' Flag.

Hexadecimal
Value

Definition Description

0x0800 Second Limit The value exceeded the second limit - an alarm limit.
The bit field Limit determined whether upper or
lower limit is exceeded.

The Second Limit flag may appear only if the current data server option Verify limits of variables is
enabled.

5.9 Archive Data Bit Fields

Flags specific to the archive data are within the range of bit numbers 16-31.

These flags are used by .NET server of archive data and Web Service server.

Table. Archive Data Bit Field.

Hexadecimal
Value

Definition Description

0x00100000 Quality Bad - No Bound The limitary value can not be passed because
the archive is not available for the time
moment responded this limitary time
moment.

0x00200000 Quality Bad - No Data The process variable value is not available
because the archive with data from the
precise time period is not available.

5 Measurement Status Description

49

0x01000000 Asix Archive End The process variable value is not available
because it found the end of archive when
reading the data (reading the data from the
period that does not occur yet or in the case
of the lack of timer synchronization between
a client computer and an Asix system
station).

0x0040000 Quality Good - Raw Value The process variable value received from the
archive.

0x00080000 Quality Good - Calculated
Value

The value calculated on the basis of archival
data.

50

6 Current Data

6.1 Identifiers

In the servers of current data, the variable name itself is sufficient for unique identification of a
process variable, i.e. the name used in the Asix system application. All other information on the
variable needed for communication with the Asix system is retrieved from the Variable Definition
Database. In order to obtain the Variable Definition Database, you should address to the
administrator of an Asix application from which the data are to be retrieved.

In the channel options, full path to the file containing the collection of variables from the Variable
Definition Database should be determined on an interactive basis or by program. For details, see the
chapter on server configuration 3.6.2.Variable Definition Database.

In the simplest case, the identifier is the variable name itself. However, identifiers may be much
more complex. Identifiers may be divided into simple identifiers and intermediate identifiers.

Simple Identifiers

For list of simple identifiers, see the table below. The notation <Variable> means the name of a
variable in the Asix system application. The notation <Attribute> means the name of an attribute in
the Variable Definition Database of the Asix system application.

Table. Current Data - Simple Identifiers.

Identifier Description Possible Value Type

<Variable>
<Variable>.CV

The current value of a variable. R4, I2, I4, UI2, UI4

<Variable>.DATA_TYPE A canonical type of the current
value of a variable.

I2

<Variable>.EU_UNIT Variable unit. STRING

<Variable>.DESC Variable description. STRING

<Variable>.HI_EU The max value of the current value
of a variable.

R8

<Variable>.LO_EU The min value of the current value
of a variable.

R8

<Variable>.<Attribute> Variable attribute value. STRING, R8

<Variable>FormatedCV The current value of a variable
converted in accordance with the
Format attribute value of this
variable.

STRING

<Variable>.PercentageCV The percentage current value of a
variable.

R8

<Variable>.BarCVs The percentage current value of a
variable complying with a bar

[R8, R8]

6 Current Data

51

basis and the current percentage
value of the bar basis (2-element
table).

<Variable>.<Attribute>.CV The variable attribute value in the
database, if the value is a number.

R8

<Variable>.<Attribute>.CV.
FormatedCV

The variable attribute value
formated in accordance with the
Format attribute value of this
variable. The row value of the
variable is a number.

STRING

<Variable>.<Attribute>.
CV.PercentageCV

The percentage value of a variable
attribute. The row value of the
attribute is a number.

R8

Intermediate Identifiers

The intermediate identifier always starts with the phrase <Variable>.<Attribute>.CV. The attribute
<Attribute> of the variable <Variable> must contain the name of another variable - such a variable is
named an intermediate variable.

The example of an intermediate variable is a variable that makes available the values of the warning
or alarm limit of another variable.

For the list of possible intermediate identifiers, see the table below:

Table. Current Data - Intermediate Identifiers.

Identifier Description Type

<Variable>.<Attribute>.CV The current value of a mediate
variable.

R4, I2, I4, UI2, UI4

<Variable>.<Attribute>.CV.
FormatedCV

The current value of a mediate
variable converted in accordance
with the Format attribute value of
this variable.

STRING

<Variable>.<Attribute>.
CV.PercentageCV

The percentage current value of a
mediate variable.

R8

<Variable>.<Attribute>.CV.BarCV The percentage current value of a
mediate variable complying with a
bar basis and the current
percentage value of the bar basis
(2-element table).

[R8, R8]

<Variable>.<Attribute>.CV
.<Attribute2>

The attribute value <Attribute2>
of a mediate variable.

STRING, R8

AsixConnect

52

6.2 Operation Without Variable Definition Database

NOTICE: In general using the Variable Definition Database is recommended. Using the information
contained in this chapter should be exceptional.

AsixConnect servers of current data accepts also descriptive identifiers of variables and where you
use these identifiers only, loading the Variable Definition Database is not needed.

During verification of a descriptive identifier no communication with the Asix system to perform this
verification is needed. Any errors concerning communication with Asix, which may occur later, are
signalled in a field/parameter quality during the read operation and as a result of the read/write
operation of the variable value.

A descriptive identifier takes the following form:

asmen.<channel name>.<variable name>.<variable type>

where:

• channel name - a group name of the current variables registered in the Asmen module of an Asix
system application,
• variable name - a name under which the process variable is known in an Asix system application,
• variable type - two or three characters defining the type of a variable according to the table
below:

Table. Types of Variables Used for Descriptive Identifiers of Variables.

Variable Type Description of Variable Type
R4 Real variable
I2 16-bit signed integer
UI2 16-bit unsigned integer (word)
I4 32-bit signed integer
UI4 32-bit unsigned integer (long word)
UI1 8-bit unsigned integer (byte)

The type of a variable in the Asix system can be defined on the basis of its conversion function.

EXAMPLE

An example of a variable identifier:

asmen.Camac.06C_A111AF00.R4

This identifier denotes a process variable named 06C_A111AF00, accessible in the Camac channel.
This is a real type value.

6 Current Data

53

NOTICE: In the Asix system uppercase and lowercase letters in the names of channels and variables
are distinguished. This may sometimes cause problems, because some DDE clients automatically
change all letters to the lowercase letters or to the uppercase letters.

6.3 Defining Write Rights

6.3.1 Simple Write Function

Write is an operation to assign a new value to a process variable. Time stamp (i.e. current time) is
assigned by the Asix system; quality is assumed to be good.

Write operation will be successful if:

• a variable is provided with a write property (this depends on controller driver and on controller
itself; the most frequently variable is provided with a write property);
• the client is assigned authority to set a new value in the channel which the variable belongs to.

The client is always authorized to set the value of a variable in any channel in the application of the
Asix system running on the same computer as the client. In order to assign the client running in other
computer, authority to set the values of variables in the defined channel, you need to enable the
option Remote Write Access with the use of: Architect > Current Data group > <NONE channel name>
definition > Advanced tab > the option Remote Write Access for the channel parameters.

<NONE channel name> denotes the name of an Asix system channel which the authority to write will
be assigned to.

The name of a client computer in the Asix system which will be assigned authority to write to the
defined channel - name of the computer is defined as follows:

Table. Client Computer Name in the Asix System.

Description of Client Software
Configuration

Client Computer Name in Asix System

Only the AsixConnect package is used and
the aslink.ini file was not created or the line
Name was not defined in the ASLINK section.
By default, aslink.ini is in the directory:
c:\AsixApp\cfg.

The name of a client computer in Windows
system plus a dot added at the end- e.g. for
the computer named "CLI", its name in the
Asix system is "CLI." .

Only the AsixConnect package is used and
the aslink.ini file was created, the Name line
was defined in the ASLINK section.

The name of a client computer in the Asix
system is provided in the aslink.ini, in the
section ASLINK, in the line Name.

AsixConnect and the Asix application run on
the same computer.

The name of a client computer in the Asix
system is provided in the Asix application
*.xml file with the use of Architect >
Network Module > Computer Name tab.

AsixConnect

54

6.3.2 Extended Write Function

The extended write is an operation to assign new value, quality and time stamp to a process variable
by a client.

Extended write operation will be successful if:

• a variable is provided with a write property (this depends on controller driver and on controller
itself; the most frequently variable is provided with write property);
• the client is assigned authority to set the new value, new status and new time stamp in the
channel, which a variable belongs to.

In order for the client to have this authority:

• for the channel relevant write permit, which the variable belongs to as described in Extended
write function, should be configured;
• the channel must be supported by the driver named NONE;
• in ini file of the application of the Asix system, there must be section of the same name as the
channel name. This section must contain the entry WRITE_TIME_AND_STATUS=YES.
In the application configuration file parameterized by the Architect program (Asix ver. 5 and upper),
the time and status write is declared in the channel parameters - if tabs with the channel parameters
do not have such a parameter, use the possibility of entering parameters via Architect >
 Miscellaneous > Directly Entered Options tab.

EXAMPLE

An example of the fragment of an ini file:

[ASMEN]
CHANNEL1=NONE
WRITE_PERMIT = CHANNEL1, KE2
[CHANNEL1]
WRITE_TIME_AND_STATUS = YES

This fragment of the file denotes that servers from the AsixConnect package, running in computer
named KE2 in the Asix network have authority to write values, status and time stamp into the
variables in the channel CHANNEL1.

NOTE: The WriteEx function is supported by the Asix system in versions supplied after 2000/04/20
(Netsrv module in version 2.2.0 or later and the Asmen module in version 3.2.8 or later).

6 Current Data

55

6.4 Automation Server

6.4.1 Automation Server

Automation mechanism developed by Microsoft and available in the family of Windows operating
systems enables the applications an access to its functionality as programming objects. Objects
include the functions, properties and events. Automation server of current data allows access to the
part of Asix system functionality in the scope of current data with use of Automation mechanism.
Automation server is an in-process server implemented in form of DDL dynamic library and executed
in the client memory space. The server is registered in Windows operating system as an object
named XConnect.ServerCT. Detailed description of the functions, properties, events and constants of
this object is given later in this chapter. The server also registers in the operating system its own
library of types named AsixConnect Type Library.

Automation server of the current data complies with Automation mechanism and may be used in
programming languages handling the Automation mechanism. These languages are: Visual Basic,
Visual Basic for Applications (e.g. from Microsoft Office package) or Visual Basic Script.

When converting Visual Basic application that uses the AsixConnect package in version 3, the name
of the server object ServerCT.App should be changed into XConnect.ServerCT. When using a Visual
Basic application that uses the package AsixConnect ver. 6, the name of the object
XConnect11.ServerCT should be changed into XConnect.ServerCT. When converting from any version,
change the name of your library types into AsixConnect Type Library.

6.4.2 Application of Server

When you are going to perform operations on the current variables with use of Automation server,
you should carry out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of the Asix application from which the current data
are to be retrieved or generate such a base.
• Using the Configurator program, configure the basic channel or establish and configure your
own channel.
• Develop a program operating on XConnect.ServerCT. In this program, you need to:

o create an object of XConnect.ServerCT;
o call the LoadChannel function, giving as a parameter the name of the previously
configured channel;
o using the Read and Write procedures, execute the data exchange
and/or
o activate automatic data transfer from the server with use of events:

- pass the DataChange events to the handler object in order to receive through them the
information on current values of variables,
- using the SetItemActive procedure, activate supplying by the server the current values of
variables,
- assign the True value to the property named Active, in order to start generating
DataChange events by the server.

AsixConnect

56

All procedure parameters, properties and event handler parameters are of VARIANT type.
Rather than using channels, the server parameters may be set (and Variable Definition Database may
be loaded) using the Init function.

6.4.3 LoadChannel Function

The function calling syntax:

LoadChannel ChannelName

This function is designed for initialization of the XConnect.ServerCT object by loading the channel. As
the ChannelName parameter, the channel name should be given (see: 3. Connection Configuration).

6.4.4 Init Function

The function calling syntax:

Init InitString

This function is designed for setting server parameters. For description of the function, see 3.5.
Program Configuration, and for available options, see the following sections.

6.4.5 Read Function

The function calling syntax:

Read DataSource, ItemID, Value, Quality, TimeStamp

The Read function is designed for reading the current values of process variables.

DataSource is an input parameter and defines data source. It may take one of the following three
values: dsCache, dsDevice, dsDrive. Their meaning is given in the table below.

6 Current Data

57

Table. Values of the ’DataSource’ Parameter for the ’Read’ Function for Automation Server (Current
Data).

Data source Description of
Data Source

Reading Time Delay of
Variable

Application Number
Value

Notes

 dsCache Cache memory of
Automation server

Shortest Highest:
an asix
system
sampling
rate + time
from the
latest
update of
the server
cache
memory

Variables to be
read many
times and
variables active
at the moment

1 Read
variable
must be
active
(See:
 SetItem
Active f
unction)

 dsDevice Cache memory of
the Asix system

Average Average: the
Asix system
sampling
rate +
network
transfer
time

Variables to be
read small
number of
times

2

 dsDriver Industrial
controller

Longest Smallest:
reading time
from a
device +
network
transfer
time

Apply only if the
value of a
process variable
from this
current time is
needed.

3

NOTICE: Reading from the cache memory of Asix (dsDevice) is supported by the Asix system in
versions supplied after 2000/06/01 (Netsrv module in v. 3.1.0 or later). In earlier versions, reading
from the Asix cache memory is automatically replaced by reading from a controller.

ItemID is an input parameter and should contain the variable identifier.

After the read operation, the Value parameter contains the value of a variable; the Quality
parameter contains variable quality and the TimeStamp parameter contains the variable time stamp.

The Quality (variable quality) parameter contains the quality flag described in section 5.3. Quality Bit
Field.

The TimeStamp parameter contains a value of VARIANT/DATE type representing the time stamp of
the current value of a process variable; local time is used. The TimeStamp parameter is optional.

AsixConnect

58

6.4.6 SetItemActive Function

Function calling syntax:

SetItemActive ItemID, ActiveState

The SetItemActive function is designed for activating and deactivating the process variable, i.e. it
adds or removes variable from the list of variables refreshed in the cache memory.

ItemID is an input parameter and should contain the variable identifier.

The ActiveState parameter should contain the value True if the variable is to be activated and the
value False if the variable is to be deactivated.

If the variable is active then:

• the Asix system sends to Automation server the current value of a process variable; the sending
time is equal to the variable sampling time in the Asix system;
• the variable value may be read from the cache memory of Automation server with use of the Read
function, passing the ds.Cache constant as the DataSource parameter;
• the value of a variable may be sent to the client automatically through the DataChange event.

6.4.7 Write Function

The function calling syntax:

Write ItemID, Value

The Write function is designed to set a new value to a process variable.

ItemID is an input parameter and should contain the identifier of the variable to which the new value
is to be set.

In the Value parameter you should pass the new value of a process variable as an integer or a real
number. Together with the value, good quality (qualityGood) and time stamp equal to the current
time of the Asix system are set.

The write configuration method is described in chapter 6.3.1. Simple Write Function.

6 Current Data

59

6.4.8 WriteEx Function

The function calling syntax:

WriteEx ItemID, Value, Quality, TimeStamp

The WriteEx function is designed to set a new value, new status and time stamp to a process
variable.

ItemID is an input parameter and should contain the identifier of the variable to which the new value
is to be set.

In the Value parameter you should pass the new value of a process variable as an integer or a real
number.

In the Quality parameter you should pass the new status of a process variable. You can use one of
the following constants: qualityGood, qualityUncertain or qualityBad.

In the TimeStamp parameter you should pass the new time stamp of a process variable. This value
must be that of VARIANT / DATE type (i.e. date and time).

The write configuration method is described in chapter 6.3.2. Extended Write Function.

6.4.9 Active Property

Active is a read/write property and is designed to control transfer of current values of the active
variables from a server to a client. The variable is active when the function SetItemActive with the
itemID parameter containing the variable name and the parameter ActiveState equal to True was
called. In order the current values would be transferred, the Active property has to take the value
True. A default value of Active is False.

6.4.10 ServerState Property

ServerState is a read only property. It returns the current state of a server. It takes one of the
following values.

Table. The ’ServerState’ Property Values.

Value Meaning Number
Value

 ssRunning The server is running correctly. The variable collection 1

AsixConnect

60

has been loaded.
 ssFailed The Error during starting the server. 2
 ssNoConfig The server is running correctly but the variable

collection was not loaded.

3

 ssSuspended The server is suspended (at present this value is not used
by Automation server of the AsixConnect package).

4

 ssTest The server is running in test mode (at present this
value is not used by Automation server of the
AsixConnect package).

5

6.4.11 StartTime Property

StartTime is a read only property. It contains the server start time.

6.4.12 DataChange Event

The event syntax:

DataChange ItemID, Value, Quality, TimeStamp

The DataChange event is triggered after every change of the process variable value. To trigger an
event, the process variable must be active (see section 6.4.6 SetItemActive Function) and the Active
server property has to have the value True.

The DataChange event parameters have the same meaning as those of the Read function.

6.4.13 Error Handling

If an operation performed by the server fails, then the client receives an error code. The error codes
are described in the server specification. To retrieve the text description of the error, a client can use
the standard Automation mechanism, i.e. the GetErrorInfo function and the IErrorInfo interface.

If the client is a program developed in any version of Visual Basic language, then in case of error, the
program goes to execute the line declared with use of the ON ERROR GOTO instruction. Information
on the error will then be available via the standard Visual Basic object named Err. This object allows
access to the error code and its text description.

6 Current Data

61

EXAMPLE

Sub test ()

On Error GoTo blad
...
’ code of program using the Automation server
...
Exit Sub

error:
MsgBox Err.Description

End Sub

6.5 DDE Server

6.5.1 DDE Server

DDE, developed by Microsoft Company and available in the Windows operating system family, allows
applications to share their functionality with operation of several messages defined in the DDE
mechanism. The DDE server of current data enables access to the part of Asix system functionality in
the scope of current data with use of DDE mechanism. The DDE server is implemented in the form of
EXE type program. After starting, it logs on to the Windows operating system as a server under the
names: ServerCTDDE and CTDDE.

The DDE server of process variables must be run before a client program attempts to establish
connection with it. You can start the server from the menu Start of Windows or with Windows
Explorer by double-clicking on the ServerCTDDE.exe file located in the directory where the
AsixConnect package is installed.

6.5.2 Application of Server

When you are going to perform operations on current data with use of DDE server, you should carry
out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of the Asix system from which the current data are to
be retrieved or generate such a base.
• Using Configurator program, configure the basic channel or establish and configure your own
channel.
• Start DDE server.

Using the C++ programming language, you should in the program:

• establish connection with the DDE server, passing as the service parameter the text
ServerCTDDE or CTDDE; as the topic parameter you should pass the previously configured
channel name;

AsixConnect

62

• using the XTYP_REQUEST and XTYP_POKE transactions, execute the data exchange.

Using Visual Basic programming language, you should in the program:

• establish connection with the DDE server, passing the text CTDDE as the first parameter of the
DDEInitiate function; you should pass the name of a previously configured channel as the second
parameter of the function;
• using the DDERequest and DDEPoke functions, execute the data exchange.

6.5.3 DDE Operations Supported by the Server

Functions described in this section are those of the Windows system, designed for communication
with DDE servers and available from C/C++ language level. The functions are made available by the
standard DDEML library, facilitating the use of DDE mechanism. Equivalents of those functions are
also available in Visual Basic language and described in 6.5.5. Using the DDE Server in Excel.

DDEConnect
The DDEConnect function is designed to establish a connection with a DDE server.

If you like to connect to server of the Asix system pass the ServerCTDDE or CTDDE string as the
service parameter. As the topic parameter the channel name should be passed. If the user has
configured the basic channel, then null string or one * character is passed as the service parameter.

DDEDisconnect
The DDEDisconnect function is designed to disconnect the client from a DDE server.

DDEClientTransaction
The DdeClientTransaction function enables execution of several operations referred to as
transactions in DDE terminology. Type of the transaction depends on a value of the wType
parameter of this function. Constants that may be used as a value of this parameter are discussed
below. In Visual Basic language a separate function to perform every type of transaction is provided.

XTYP_REQUEST
The XTYP_REQUEST transaction is designed to read the current value of a variable. The identifier of
variable to be read is passed in the item transaction parameter. Data is retrieved from the cache
memory of the Asix system. If the retrieved value is a real number, then a default decimal separator
is the same as declared in the Windows system configuration.

XTYP_POKE
The XTYP_POKE transaction is designed to set the new value of a variable. The transaction parameter
includes the variable identifier and the new value. If retrieved value is a real number, then default
decimal separator is a point. Decimal separator may be changed in DDE options to that as declared in
the Windows system configuration.

The write configuration method is described in 6.3.1. Simple Write Function.
For description of setting the server parameters, see 3.4.1. Configurator Program, and for available
options, see the following sections.

6 Current Data

63

XTYP_ADVSTART
The XTYP_ADVSTART transaction activates the transfer of the current variable value from a server to
a client. The transaction parameter includes the variable identifier of the variable which value is to be
received.

It is possible to transfer the current values of the variable group in one transaction. In this case as the
item parameter you should pass the list of identifiers separated with semicolons. The maximum size
of the list of variable identifiers is 255 characters. This limit is specified by DDE mechanism.

XTYP_ADVSTOP
The XTYP_ADVSTOP transaction stops passing the current value of a process variable from a server to
a client. As a transaction parameter you should pass, either the variable identifier for single variables,
or the list of identifiers for the group of variables.

XTYP_EXECUTE
This transaction is not used by DDE server of the AsixConnect package.

6.5.4 Format of Transferred Data

The DDE may transfer data in single-column or in four-column format. As default, the single-column
format is specified but it may be changed in the program options.

A single-column format is used to transfer either a variable value or error information. The error
information contains the error text description.

In four-column format, the first column contains: variable status, the second one: variable value, the
third one: variable quality and the fourth one: time stamp.

A status less than zero denotes that read operation failed; this status specifies also the reading error
code. The status equal to 0 or higher than 0 denotes that read operation was successful and other
columns contain correct values.

The quality may be sent as one of the following values: qualityGood, qualityUncertain or qualityBad.
Their meaning is as follows.

Table. Values of the Quality (for DDE Server /Current Data).

Quality Meaning Number
Value

qualityGood The second column contains the current
value of a process variable.

0xC0(192)

qualityUncertain The second column contains the current value
of a process variable but its value is uncertain.
e.g. exceeds maximal range defined for this
measurement.

0x40 (64)

qualityBad The current value of a process variable is not
accessible, e.g. because of connection failure
with the controller.

0

AsixConnect

64

During reading and updating a variable, data are transferred in the form of one row containing one
or four columns. During updating the group of variables, data is transferred in the form of table in
which each row contains information concerning one variable.

The DDE server applies the CF_TEXT format for data transfer, i.e. text format; numbers are sent in
this format in text representation. If the row includes four columns, then their separator depends on
program configuration. The columns may be separated with a separator such as configured in
Windows system Control Panel or with Tab character. If a table is transferred, the individual rows are
separated with a new line character. Data in the CF_TEXT format are terminated with a character of 0
code.

6.5.5 Transfer of Error Information

If an operation fails, you can get error code by reading the value of the variable of a special name
LastError. Reading the variable named _LastErrorMessage_ you can get a text description of the
error. Don't forget about an underscore character at the beginning and at the end of the name.

It is very important to retrieve information on an error code in programs developed in Visual Basic
language, because language itself doesn't signal such error.

6.5.6 Using the DDE Server in Excel

We assume that DDE server transfers data in default single-column format.

A cell in the spreadsheet of Excel program may contain formula referencing to remote data
accessible with use of the DDE protocol. The formula takes the following form:

= service | topic ! item

The name of the AsixConnect DDE server, i.e. ServerCTDDE or CTDDE, should be passed as the service
parameter. As topic, the channel name (character * if the basic channel is to be used) should be
passed. As item, the variable identifier should be passed. If any item of the formula contains spaces
or non-alphanumeric characters, they must be closed in apostrophes. After introducing the formula,
Excel connects to the DDE server and attempts refreshing the values of variables. The result may be
threefold:

• OK - in a cell appears the current value of a variable and then it is refreshed,
• error in attempt of access to the variable encountered by the DDE server - Excel receives the
text error description,
• error on start of refreshing cycle because the connection to the DDE server could not be set
up - Excel displays the N/A (not available) error. Check whether the DDE server is started and its
name is correct.

6 Current Data

65

The names of the DDE functions available in Visual Basic are as follows.

Table. Names of the DDE Functions Available in Visual Basic.

Name of DDE Functions/Operations Name of Function in Visual Basic
DDEConnect DDEInitiate
DDEDisconnect DDETerminate
DdeClientTransaction, XTYP_REQUEST DDERequest
DdeClientTransaction, XTYP_POKE DDEPoke

The XTYP_ADVSTART and XTYP_ADVSTOP transactions have no equivalents in Visual Basic functions.

Groups of Variables

In order to begin updating the group of variables, enter so called 'table formula' to the cells of
spreadsheet. The table formula may be entered to the range of cells in the form of a rectangle. Select
the range and go to edition by pressing the F2 key. Item contains the names of variables separated
with semicolons, in this formula. A maximum size of the item parameter is equal to 255 characters.
This limit is specified by DDE mechanism.

Application of variable groups in place of single variables has a large effect on efficiency of updating
variable values. The DDE mechanism enables updating about 200 variables per second (with use of
Pentium 166 MHz). If, in place of single variables, you will use the variable groups, then efficiency
increases almost proportionally to the size of the group, e.g. for groups including 25 variables it is
possible to transfer even 3000 variables per second.

The selected range of cells should be one or four column wide, depending on transfer mode during
updating, and should have so many rows as the number of variables in the group. After editing click
on and hold down CTRL+SHIFT keys and then click on ENTER key. In this way, an introduced formula
will be placed to all cells of the range.

An attempt to cancel any cell will cause the error message. The table formula can be cancelled after
selecting the complete range only. In order to select quickly the complete range occupied by the
formula, activate any cell of the range and click on CTRL-/ (slash) keyboard shortcut.

6.5.7 'DDE Server' Service

AsixConnect includes the DDE server module, which is not operating as a normal application but as a
service of the Windows operating system. This module may be executed in the Windows
2003/XP/2000/NT4 environment only. The DDE service is added to the list of services registered in
the operating system during the installation of AsixConnect. Its name is DDE server of current data of
Asix system and it is configured as a "service started manually".

AsixConnect

66

In order to start this service automatically during the operating system startup, the user should
change the starting mode from manual to automatic with use of the Services applet in Control
Panel/Administrating Tools. In Windows NT4 this applet is available in Control Panel.

The DDE Server service makes use of the same configuration file as every server of the AsixConnect
package. In order to change the options of DDE Server sevice, change the options using the
Configurator program and restart the service.

NOTE: The DDE Server service of AsixConnect requires configuration of the system access rights to
the package components. The configuration procedure consists of the following steps.

STEP 1

Run dcomcnfg.exe.

STEP 2

In the main window of the program, look for DCOM Configuration > Aslink Manager Application and
select Properties.

Fig. The 'Aslink Manager Application Properties' Window - Security.

6 Current Data

67

STEP 3

On the Security tab, after the Use custom access permissions option is selected and Edit button is
pressed, the window will be opened in which the ASPNET user should be assigned the Access
permissions. The operation should be accepted by clicking on OK.

Fig. The 'Registry Value Permissions' Window.

In the window ’Aslink Manager Application Properties’, click on (!) the button Apply.

STEP 4

Identity of the user who will be authorized to start the Aslink module should be defined. It is done in
the Identity tab of the ’Aslink manager application Properties’ window. Set Administrator as
the User and the relevant password. If the Asix system does not operate on the same computer, the
option The Launching User may be selected. The modifications are accepted by clicking on the button
Apply.

AsixConnect

68

Fig. The 'Aslink Manager Application Properties' Window - Identity.

6 Current Data

69

6.6 OPC Server

6.6.1 Technical Specification

OPC server of the Asix system comply with the specification Data Access Custom Interface Standard
Version 2.04 available on website http://www.opcfoundation.org. This specification is also loaded to
subdirectory Documentation/OPC during the installation of the AsixConnect package.

The OPC specification (OLE for Process Control) was developed by OPC Consortium, established by
several leading manufacturers developing software for industrial process control. This specification
enables development of servers that allow access to the current data retrieved from different
systems via one common interface.

OPC server, supplying current data from the Asix system, registers in the Windows system under the
name ServerCTOPC.App and under this name is available for all tools that can apply services of OPC
servers.

6.6.2 Details of Implementation

6.6.2.1 Introduction

OPC fully complies with the OPC Specification but this specification includes the optional features
that may be implemented by the different methods. Therefore, this chapter is dedicated to
description of the implementation methods of these features.

6.6.2.2 OPC Server Object

OPC server (below referred to as 'server') enabling access to the current data of the Asix system,
registers in the Windows system under the name ServerCTOPC.App. Server registers also in the
system registry of object category as the one complying with the specification OPC Data Access 2.0.
Furthermore, the key HKEY_CLASSESS_ROOT\ServerCTOPC.App\OPC is added which enables old
versions of OPC clients to identify the server as complying with the OPC specification.

The server is implemented as a local COM server (out-of-process), i.e. in the form of EXE file. OPC
calls are handled in the main thread of server process. An additional thread operating in background
is designed to update the cash memory with the values and status of variables; updating is
performed with data transferred to the server by network communication module of the Asix
system.

The server is of multiple-use type, i.e. one server process may handle many clients; each client
"receives" its own COM object that represents the server. The server implements the thread

AsixConnect

70

handling model APARTMENT_THREADED. In this model, objects are created and handled by main
thread of process and all callings to objects are handled in this thread.

The server accepts two languages: Polish (system identifier langid 0x0409) and English US (langid
0x0415). If the user tries to choose as obligatory the dialect of English other then US (e.g. UK, AUS),
then this operation is accepted but is treated as selection of US English. Default language of the
server is Polish if Polish is the language of Windows, or English US in other case.

The OPC_STATUS_NOCONFIG constant is returned as the server status if either no Variable Definition
Database was defined in server options or loading the defined Variable Definition Database failed.
Then descriptive variable identifiers are handled only.

6.6.2.3 Browsing of Variable Definition Database

The OPC server ensures browsing of variable identifiers available in the server. The server is provided
with a hierarchical namespace defined by the selected collection of variables.

The option OPC attributes displayed as variables change the way of browsing the Variable Definition
Database. By default, when this option is disabled, the branches of the tree that represent the
Variable Definition Database are the groups of variables, while the leaves are individual variables. If
this option is enabled, the internal branches of the tree are the groups of variables, while the
external branches are individual variables. The leaves are the attributes of variables, such as: value,
description, unit, upper range and bottom range.

All types of identifier filtering are implemented i.e.:

• retrieving identifiers that have sub-identifiers;
• retrieving identifiers that have no sub-identifiers;
• retrieving all identifiers from current and lower level.

Handling the filtering criteria, i.e. the pattern with which returned identifiers must be compliant is
also implemented. To check compliance with the pattern, the function MatchPattern working as the
LIKE function in Visual Basic language is recommended by the OPC specification.

The table presents special characters allowed in the pattern and possibility of their matching.

Table. Special Characters Allowed in the Pattern for the ’r;MatchPattern’ Function.

Character in Pattern May Be Matched to

? Any single letter.

* Zero or more letters.

Any single digit (0-9).

[lista_znaków] Any single character from the list of characters.

[!lista_znaków] Any single character off the list of characters.

6 Current Data

71

Filtering according to a variable type was not implemented because the server may pass practically
every variable in any format and an appropriate conversion may be performed by the
VariantChangeType function of Windows. Likewise, filtering according to access rights was also not
implemented because access to the information on write permission to the variables was not
implemented as yet in the Asix system.

According to the OPC specification, the function GetItemID returns for a given identifier "fully
qualified" identifier in the hierarchical space of identifiers i.e. identifier with its full path. Server does
not generate such names and returns only the identifier. Such implementation was chosen because
in the Asix system identifiers are unique and providing them with path is not required.

The function BrowseAccessPath always returns the information that access paths cannot be found.

6.6.2.4 Browsing Variable Properties

The OPC server ensures inspection of properties that are available for the selected variable. For all
variables the following properties are available: Cardinal Type, Value, Status, Time Stamp, Access
Rights, Server Scanning Period, Description. For some variables the following properties may also be
available: Unit, Upper Range, Lower Range.

Each property is assigned its code, short text description and property type. The sServer takes into
account the current language during publishing descriptions of properties, i.e. descriptions are in
Polish if the current language is Polish, otherwise in English.

6.6.2.5 Variable Access Path

An access path to the variable parameter is interpreted as a name of an Asix computer, which the
variable is to be retrieved from. For description of channel definition, see 3.1. Channels.

6.6.2.6 Process Variables

As minimal sampling time was assumed 1 second. If client requires shorter time then sampling time
will be increased to the minimal one.

Any type of a variable required by a client is accepted. If this type is different than that in the Asix
system, conversion is performed with use of the VariantChangeType function of the Windows
system. If conversion is not possible, the client will receive the OPC_E_BADTYPE error code.

If added variable need to be active, the server attempts to perform the initialization action for
updating the variable from the Asix system. Result of this action has no effect on result of the
AddItem function.

AsixConnect

72

If an error occurs during initialization of updating, the server will cyclically try to begin updating until
this action will be successful. The current status of a variable is returned by functions reading the
variable value from the server cache memory.

6.6.2.7 Synchronous Operations

The Read function is designed to read the values, quality and time stamps of variables that belong to
the given group. The server is provided with internal buffer for variable values, from which values are
retrieved when they are read from the cache memory. Data are read from the device via the Asix
system network. Time of read operation from the device depends on the time necessary to find the
data server of the Asix system. This time is set in the server configuration dialog window and its
standard value is equal to 3 seconds. Searching is performed only once during the first read
operation from a given resource of Asix and only if there are no active variables having source of data
in this resource.

6.6.2.8 Asynchronous Operations

The asynchronous operations are put in a queue and due to this asynchronous operations end their
action immediately and client may continue its operation.

Server may put in a queue only one operation of the same type at a time, what complies with the
OPC specification. The server returns the error CONNECT_E_ADVISELIMIT during an attempt to put in
the queue more transactions.

In general, the server uses the main thread for handling the requests of OPC clients and to send and
receive data to/from the Asix system. The operating thread receives and handles messages about
changing values of variables. This means that for asynchronous operations, the main thread at first
puts into queue operation to be performed and after informing client that operation is accepted,
asynchronous operation begins. During operation the main thread is busy and requests to perform
other operations for the client wait until the end of the asynchronous operation.

6.6.2.9 Writing New Value, Quality and Time Stamp

The Write function of ISyncIO interface was extended, with regard to the OPC specification, by the
possibility to assign the new value, quality and time stamp at the same time. In order to use this
feature, pass the value of VARIANT type containing one-dimensional array of 3 items as a respective
array item of the pItemValues parameter. The first item of this array contains a new value, the
second a quality of variable, and the third item a time stamp. Quality has to be passed in

6 Current Data

73

VARIANT/VT_I4 format or convertible to it. Time stamp have to be passed in VARIANT/VT_DATE or
convertible to it.

6.7 .NET Server

6.7.1 Application of Server

The ServerCT class enables access to the functional part of the Asix system related to the current
data. When you are going to perform operations on current data with use of .NET server, you should
carry out the following steps.

• Install AsixConnect package.
• Obtain the Variable Definition Database of the Asix system from which the current data are to
be retrieved or generate such a base.
• Using the Configurator program, configure the basic channel or establish and configure your
own channel.
• Generate the project in the Visual Studio package and then:

o highlight the References directory in the project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet.dll file in the
c:\asix subdirectory, click on OK and close the Add Reference window. In every file with the
C# source code, the following line should be added in the using declaration area:

using XConnectNet;

• Develop a program operating on ServerCT. In this program, you need to:

o create object of ServerCT type, giving the name of the previously configured channel as
the parameter;
o using the Read and Write functions, execute the data exchange;
o during data exchange, you should remember about handling of exceptions as they may be
reported by the server.

6.7.2 ServerCT Designer

 [C#]
public ServerCT(
 string channelName);

This function is used to create and initiate the object of ServerCT class.

As the channelName parameter, the channel name should be given (see: 3. Connection
Configuration).

AsixConnect

74

6.3.2 Dispose Function

 [C#]
public void Dispose();

This function is used for releasing the resources used by the ServerCT object. This function must be
called after the use of the ServerCT object has been finished. Calling should take place from the same
thread the object was created in.

6.7.4 Init Function

 [C#]
public void Init(
 string initString);

This function is designed for setting the server parameters. For description of the function, see 3.5.
Program Configuration, and for available options, see the following chapters.

6.7.5 Read Function

[C#]
public ItemState Read(
 DataSource dataSource,
 string itemID);
public ItemState[] Read(
 DataSource dataSource,
 string[] itemIDs);
public DataSet Read(
 DataSource dataSource,
 string[] itemIDs,
 CTDataSetFlags dataSetFlags);

The Read function is designed for reading the current values of the process variables.

The DataSource defines the data source. It may take one of the three values described in the table
below.

6 Current Data

75

Table. Values of the 'DataSource' Parameter for the 'Read' Function (for the .NET Server /Current
Data).

Data Source Description
of Data
Source

Reading
Time

Delay of Variable Application Notes

DataSource.Cache Cache
memory of
.NET server

Shortest Highest:
Asix system
sampling rate +
time from latest
update of server
cache memory

Variables to be
read many
times and
variables active
at the moment

Read variable must be
active (see:
SetItemActive function)

DataSource.Device Cache
memory of
asix system

Average Average: Asix system
sampling rate +
network transfer
time

Variables to be
read small number
of times

DataSource.Driver Industrial
controller

Longest Smallest:
reading time from
device + network
transfer time

Apply only if value
of process variable
from this current
time is needed

In the first version of the Read function the second parameter is itemId. This input parameter should
include identifier of the variable which value is to be read. As a result the function returns the
structure of ItemState type, which includes the variable status.

In the second version of the Read function the second parameter is itemIDs. This input parameter
should include the table of identifiers of variables, which values are to be read. As a result the
function returns the table of structures of ItemState type, which include the variable status.

In the third version of the Read function, the variable status is returned as an object of DateSet class.
This object contains one table named CTData. The third parameter of the Read function is the value
of CTDataSetFlags type.

Table. The Value of ’CTDataSetFlags’ Type (for the .NET Server / Current Data).

Constant Description

CTDataSetFlags.Default The CTData table contains
columns named: ItemID,
ReadResult, ErrorString,
TimeStamp, Quality and
ItemValue. Each row of the table
contains state of one variable.
The ItemValue column contains
values of Object type.

CTDataSetFlags.ItemsInColumns The CTData table contains as
many columns as variable
names are in the itemIDs
parameter. The table contains

AsixConnect

76

one row with current values of
each variable. The value is of
Object type.

CTDataSetFlags.ItemValueAsString The variable value is turned back
as a text. The constant may be
used indyvidually or
simultaneously with the
constant
CTDataSetFlags.ItemsInColumns.

NOTE: Reading from the cache memory of Asix (dsDevice parameter equal to DataSource.Device) is
supported by Asix in versions supplied after 2000/06/01 (Netsrv module in v. 3.1.0 or later). In earlier
versions, readout from the Asix cache memory is automatically replaced by readout from the
controller.

6.7.6 Write Function

 [C#]
public void Write (ItemState[] itemStates);

The Write function is designed to assign a new value to the process variable.

The itemStates parameter is an input-output parameter. Each object in the itemStates table should
contain the variable name in the name field and the value to be assigned to the process variable as a
result of execution of the write function in the dataValue field. This value may be integer or real
number. Together with the variable value, good quality and time stamp equal to the current time in
the operating system (on the server of Asix system application) are set.

The write configuration method is described in 6.3.1. Simple Write Function.

The operation result is in the result field of the ItemState structure. If the Succeeded() function of the
ItemState structure returns the value true, then the write operation will succeeded.

6.7.7 Write Function - Extended Write Operation

It is possible to assign a new value, new status and new time stamp to the process variable at the
same time. To do so, in the ItemState structure a new time stamp of the variable should be set in the
timeStamp field, and a new value of the variable quality should be set in the quality field.

6 Current Data

77

The write configuration method is described in 6.3.2. Extended Write Function.

6.7.8 ItemState Structure

Object of ItemState type is used for transferring the variable value. It is applied by the Read and
Write functions and the ItemsChange event.

After execution of the Read function has been finished or the ItemsChange event is called, the
contents of the structure is as follows.

Table. The Contents of the ’r;ItemState’ Structure (for the .NET Server / Current Data).

Field Content
ItemName The name of a variable which state contains an

object.
ReadResult The result of variable read or write. A negative

value means an error and is simultaneously an
error code. The 0 or positive value means that
read operation has ended with success and the
fields TimeStamp, Quality and ItemValue are
full.

ReadSucceeded() The function turns back the value true if the
value of the ReadResult field indicates that read
or write operation has ended with success.

GetErrorString() The function turns back a text description of the
error code included in the ReadResult field.

TimeStamp The time stamp of read variable state. Local
time is used.

Quality The quality of read variable state according to
OPC specification. Possible values are described
below. The good or uncertain quality means that
the ItemValue field is full.

ItemValue Variable value. The field is of object type and
contains the value of the type suitable for a read
variable.

IsQualityGood() The function turns back the value true if the
value of Quality field indicates that quality of
the variable state is good and the ItemValue
field is full.

AsixConnect

78

6.7.9 SetItemActive Function

 [C#]
public ItemState[] SetItemActive(
 string[] itemIDs,
 bool activeState);

The SetItemActive function is designed for activating and deactivating the process variable, i.e. adds
or removes variable from the list of variables refreshed in the cache memory.

ItemIDs is an input parameter and should contain the table of variable identifiers.

The ActiveState parameter should contain the value true if variables are to be active and the value
false if variables are to be inactive.

If the variable is active then:

• Asix sends to object of ServerCT class the current value of a process variable; the sending time is
equal to variable sampling time in the Asix system;
• the variable value may be read from the cache memory of the ServerCT class object with use of
the Read function, passing the DataSource.Cache constant as the DataSource parameter;
• the variable value is sent automatically to the client with use of the ItemsChange event if the Active
property of ServerCT class object is assigned the value true.

6.7.10 ItemsChange Event

Declaration of event source:

[C#] public event ItemsChange OnItemsChange;

Declaration of delegation, which may be related to the source of events:

[C#] public void ItemsChangeHandler(
ItemState[] itemsStates);

The OnItemsChange event is triggered after every change of the process variable value.

To trigger an event:

• the process variable must be active (see section 6.7.9. SetItemActive Function);
• the Active server property has to have the value true.

6 Current Data

79

6.7.11 Active Property

 [C#]
public bool Active {get; set;}

Active is a read/write property and is designed to control transfer of current values of active variables
from server to client. A variable is active when the function SetItemActive with the itemIDs
parameter containing the name of the variable and the parameter activeState equal to true was
called. In order the current values would be transferred,the Active property has to take the value
true. A default value of the Active property is false.

6.7.12 Operation in ASP.NET Environment

In case of operation in ASP.NET environment, the object should be created using the
ServerCT.ServerPool.Get() expression. The ServerPool object is a static field of the ServerCT class and
it implements the pool of current data servers. Using the Get function, every time before generation
of the page the ServerCT object should be retrieved. Declaration of the Get function is as follows:

 [C#]
public ServerCT Get ();

After the generation has been completed, the server must be returned to the pool with use of the
ServerCT.ServerPool.Release() expression. As the Release function parameter the server returned to
the pool should be passed. Declaration of the Release function is as follows:

 [C#]
public Release (ServerCT server);

The server may also be taken from the pool in the beginning of each function and returned in the end
of the function. To ensure that each server is returned to the pool, the main code of the function
must be included in the try block and the server should be returned to the pool in the finally block.

private void Page_Load(object sender, System.EventArgs e)
{
 ServerCT server = null;
 try
 {
 server = ServerCT.ServerPool.Get();
 // function code
 }
 catch(Exception e)
 {
 // handling of exceptions reported when getting the server from
the pool and
 // during the function operation

AsixConnect

80

 }
 finally
 {
 if (server != null)
 ServerCT.ServerPool.Release(server);
 } }

The pool of servers:

• creates several objects of the ServerCT class for the application (the channel name is retrieved
from Web.Config file, see 3.2. How to Specify the Channel Name);
• stores the objects in the cache memory of the ASP.NET application;
• makes the objects available for successive calls under the ASP.NET application;
• reports the PoolApplicationException exception when the pool of servers has reached its
maximum size and there is no free server.

81

7 Archive Data

7.1 Identifiers

In the servers of archive data, the variable name is sufficient for unique identification of a process
variable, i.e. the name used in the Asix system application. All other information on the variable
needed for communication with the Asix system is retrieved from the Variable Definition Database.
In order to obtain the Variable Definition Database, you should address to the administrator of Asix
system application from which the data are to be retrieved.

In the channel options of AsixConnect package, full path to the file containing the collection of
variables from the Variable Definition Database should be determined interactively or
programmatically. For details, see the chapter 3.6.2 Variable Definition Database.

In the simplest case, the identifier is the variable name itself. However, identifiers may be more
complex. For the list of identifiers, see the table below.

Table. The List of Identifiers for Unique Identification of a Process Variable in Servers of Archive Data.

Identifier Description Possible Variable Type
<Variable> Current variable value. R8, STRING
<Variable>.FormatedCV Current variable vale

formated in accordance
with the value of the
Format attribute of this
variable.

R8, STRING

<Variable>.PercentageCV Current variable percent
value.

R8, STRING

STRING type is available in a .NET server only.

7.2 Operation Without Variable Definition Database

NOTE: In general, using the Variable Definition Database is recommended. Using the information
contained in this chapter should be exceptional.

The AsixConnect server of archive variables accepts also descriptive identifiers of variables and no
Variable Definitions Database loading is needed when only the identifiers are used.

AsixConnect

82

During verification of a descriptive identifier no communication with the Asix system is needed to
perform this verification. Any errors concerning communication with Asix, which may occur later, are
signalled as a result of a read/write operation of variable sample values.

The descriptive identifier takes the following form:

aspad.<archive name>.<archive type>.<variable name> where:

• archive name - group name of archive variables registered in the Aspad module of the Asix system
application,
• archive type - one letter - type of the archive which variable values are to be read from,
• variable name - name under which a process variable is known in the Asix system application.

The Asix system in version 2.68, 3.x and 4.x makes the following archive types available: D, M, Y, H
and B.

EXAMPLE

Example of variable identifier:

aspad.Camac.D.06C_A111AF00

This identifier denotes a process variable named 06C_A111AF00, accessible in the Camac archive.
The type of archive is D.
NOTE: In the Asix system, uppercase and lowercase letters in the names of archives and variables are
distinguished.

7.3 Aggregates

7.3.1 Description of Aggregates

Below is the list of supported aggregates.

Table. The List of Supported Aggregates.

English Name Polish Name Procedure of Calculation

Start Początek Value on the interval beginning .

End Koniec Value on the interval end .

Delta Przyrost Difference of values from the end and
beginning of an interval.

Min Min Interval minimum value.

Max Max Interval maximum value.

Range Zakres Difference between the maximum end
minimum values in an interval.

7 Archive Data

83

Total Suma Sum of time weighted values in an interval
(time integral).

Average Średnia Average from time weighted values in an
interval.

Average0 Średnia0 Average from time weighted values in an
interval. For periods when the value of
variables is not accessible, 0 the value is
used.

Quality_Good Jakość_Dobra Percentage of samples with a good quality in
an interval.

Quality_Uncertain Jakość_Niepewna Percentage of samples with an uncertain
quality in an interval.

Quality_Bad Jakość_Zła Percentage of samples with a bad quality in
an interval.

Quality and time stamp of aggregate is set depending on the value of the Aggregate calculation
algorithm option.

7.3.2 Askom Algorithm

In the algorithm Askom, when calculating aggregates, the time period from which data is retrieved is
divided into intervals of fixed length. The unit is calculated for each interval using the data archived
for the duration of this interval. It is assumed that each interval is a left-closed and right-open
interval.

The aggregate time stamp is equal to the end of an interval, except the aggregates Start and
Previous_Known - for which it is equal to the interval start.

The quality of the sample has the value qualityGood if the percentage of all samples for the quality
qualityGood used to calculate the aggregate is equal to or exceeds the Threshold of good quality
option. The default threshold is 80%.

7.3.3 OPC Algorithm

In OPC algorithm, for calculation of aggregates the period from which data is retrieved is divided into
fixed length intervals. The aggregate is calculated for every interval using the data archived during
this interval. Every interval is assumed to be a left-closed and right-open interval.

An aggregate time stamp is equal to the beginning time of interval, except the aggregates End and
Last - for which it is equal to the interval end.

AsixConnect

84

The quality of the sample has the value qualityGood if qualities of all samples used for aggregate
calculation have the value qualityGood. If one or more samples used for calculation of aggregate
have qualities that differ from qualityGood, then the aggregate quality takes the value
qualityUncertainSubNormal. If the status of all samples used for aggregate calculation has the value
qualityBad, then the aggregate status is equal to the value gualityBad.

7.3.4 Raport Algorithm

In the algorithm Raport, when calculating aggregates, the time period from which data is retrieved is
divided into intervals of fixed length. The aggregate is calculated for each interval using the data
archived for the duration of this interval. It is assumed that each interval is a left-closed and right-
open interval.

The aggregate time stamp is equal to the start of an interval.

The quality of the sample has the value qualityGood if the percentage of all samples for the quality
qualityGood used to calculate the aggregate is equal to or exceeds the Threshold of good quality
option. The default threshold is 80%.

7.4 OPC Time Format

OPC syntax of relative time is as follow:

keyword +/- offset +/- offset &ldots;

Possible values of keyword and offset parameters are given in table below. Spaces and Tab
characters are ignored. Every offset parameter has to be preceded with an integer number that
specifies its multiplication factor and direction.

Table. Values of 'keyword' for the OPC Time Format.

Keyword Description

NOW Current time of archive data server.

SECOND Beginning of current second.

MINUTE Beginning of current minute.

HOUR Beginning of current hour.

DAY Beginning of current day.

WEEK Beginning of current week.

MONTH Beginning of current month.

YEAR Beginning of current year.

7 Archive Data

85

Table. Values of 'offset' for the OPC Time Format.

Offset Description

S Time offset in seconds.

M Time offset in minutes.

H Time offset in hours.

D Time offset in days.

W Time offset in weeks.

MO Time offset in months.

Y Time offset in years.

For example, the text DAY -1D+7H30M might represent the beginning time of data for a day report
generated in the current day (DAY = first time stamp of today, -1D first time stamp of yesterday, +7H
means 7:00 hours yesterday, +30M means 7:30 hours yesterday; character + in last offset is
transferred from previous offset).

Similarly, MONTH-1D+5h denotes 5:00 hours of the last day of a previous month; NOW-1H15M
denotes an hour and 15 minutes ago and YEAR+3MO denotes 1st April of the current year.

In this format, time length may also be given. In this situation, the first part of keyword in the
described format should be omitted.

7.5 Automation Server

Automation server of archive data is a server implemented in form of DDL dynamic library and
executed in the client memory space. It is registered in the Windows operating system as an object
named XConnect.ServerHT. The server also registers in the operating system its own library of types
named AsixConnect Type Library.

When converting a Visual Basic application that uses the AsixConnect package in version 3, the name
of the server object ServerHT.App should be changed into XConnect.ServerHT. When using a Visual
Basic application that uses the AsixConnect package in version 6, the name of the server object
XConnect11.ServerHT should be changed into XConnect.ServerHT. When converting from any version,
you should change the name of your library of types on the AsixConnect Type Library.

AsixConnect

86

7.5.2 Application of Server

When you are going to perform operations on the archive data with use of Automation server, you
should carry out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of an Asix application from which the current data
are to be retrieved or generate such a base.
• Using Configurator program, configure the basic channel or establish and configure your own
channel.
• Develop a program operating on XConnect.ServerHT server. In this program, you need to:

o create an object of XConnect.ServerHT type,
o call the LoadChannel function, giving as a parameter the name of the previously
configured channel,
o using the ReadRaw and ReadProcessed functions, execute the data exchange.

All procedure parameters are of VARIANT type.

Rather than using channels, the server parameters may be set (and Variable Definition Database may
be loaded) using the Init function.

7.5.3 LoadChannel Function

Function calling syntax:

LoadChannel ChannelName

This function is used for initialization of the XConnect.ServerHT object by loading the channel. As the
ChannelName parameter, the channel name should be given (see: 3. Connection Configuration).

7.5.4 Init Function

Function calling syntax:

Init InitString

This function is designed for setting the server parameters. See 3.5 Program Configuration for
description of the function. Available options are described in the following sections.

7 Archive Data

87

7.5.5 ReadRaw Function

Function syntax:

ReadRaw ItemId, DateTimeFrom, DateTimeTo, Data

The ReadRaw function reads values, statuses and time stamps of a variable from an archive of a
specified period. It is designed for clients that want to read real values saved in the archive. Limit
values are also supplied to interpolate, when required, values of the variables at the beginning and
end of period for which data are to be displayed.

ItemID is an entry parameter; it should contain the variable identifier for which samples are to be
read.

DateTimeFrom and DateTimeTo are entry parameters, which should contain, respectively, beginning
and end of the period from which data are to be read. These parameters should contain value of
DATE or STRING type. A value of DATE type directly contains time stamp; local time should be used. A
value of STRING type is considered as relative time. Two formats of relative time are recognized: OPC
and asix-raporter. OPC syntax is described in 7.4 OPC Time Format. The format asix-raporter is
described in the Asix system documentation (Asix.hlp) in the chapter on Raporter module.

After the reading operation has been finished the Data parameter contains array of samples that
have been read. Array contains as many rows as the number of samples that have been read. Each
row contains: sample time stamp in in first item the time stamp of sample, in second item the
quality of sample and in third item the value of sample.

The array returns as well limit values for a given period of time. If the sample corresponding exactly
to the time point defined by the parameter DateTimeFrom was not registered in the archive, then
the latest sample before that time point is returned. If the sample corresponding exactly to the time
point defined by the parameter DateTimeTo was not registered in the archive, then the latest
sample after that time point is returned. If it is not possible to retrieve limit values from the archive,
the sample for which the quality parameter takes the value qualityBadNoBound is returned.

7.5.6 ReadProcessed Function

Function syntax:

ReadProcessed ItemId, DateTimeFrom, DateTimeTo, AggregateName,
ResampleInterval, Data

The ReadProcessed function calculates aggregates from data included in the Asix system archive, in
defined period of time and for a given process value.

Meaning of ItemId, DateTimeFrom, DateTimeTo and Data parameters is the same as for the
ReadRaw function (see: ReadRow function).

AsixConnect

88

For how to calculate aggregates, see 7.3. Aggregates.

The AggregateName parameter should contain the aggregate name.

The ResampleInterval parameter should contain the interval length. The length may be given in the
format described in 7.4 OPC Time Format. The keyword section should be omitted in the format.

7.6 OLE DB Server

7.6.1 OLE DB Server

OLE DB server enables access to data from one or more Asix systems for clients which can
communicate directly with the server with use of OLE DB protocol, or the most frequently, indirectly
using ADO (ActiveX Data Objects). OLE DB server of the Asix system enables retrieving raw data or
those aggregated with use of one of nine aggregating functions. Only reading the data is possible.
Modifying either existing or setting the new data in this way is not possible.

The server complies with OLE DB specification of Microsoft but implements only the basic
functionality of this specification. Data source, session, command and rowset are available objects of
OLE DB. The server query language is asix.SQL the syntax of which is based on SQL Query Language.

7.6.2 Identification and Configuration

OLE DB of the Asix system registers in the operating system under the shorted name
ServerHTOleDB.App and under the full name Askom OLE DB Provider for ASIX.

The dialog windows given below are displayed by clients of OLE DB with use of the system selection
and configuration mechanisms of the server. Some applications may use in this scope their own
mechanisms.

7 Archive Data

89

Figure. 'Data Link Properties' Window for Parameterization of OLE DB Server - Provider Tab.

The server handles the standard parameter named Data Source. As the Data Source parameter full
directory path to the Variable Definition Database should be entered.

AsixConnect

90

Figure. 'Data Link Properties' Window for Parameterization of OLE DB Server - Connection Tab.

7.6.3 Tables

The server enables access to one table named VariablesList. The table includes two columns named
Name and Description with a name and description of a variable. The table contains information on
all variables in the Variable Definition Database specified in the Data Source parameter.

7.6.4 asix.SQL Queries

To describe syntax of asix.SQL language, the meta-language applied by Microsoft in documentation
of Microsoft SQL 2000 server is used.

7 Archive Data

91

Table. Characters of Meta Language for asix.SQL Queries.

Characters of Meta
Language

Meaning

UPPERCASE LETTERS Keywords of Asix.SQL language.
Italics Parameters supplied by the user.
| (vertical line) Separates items in parenthesis. Only one item may be

selected.
[] (brackets) Optional item.
{} (curly brackets) Obligatory item.
[,...n] Former item may be repeated many times. Repeats

should be separated with commas.
[...n] Former item may be repeated many times. Repeats

should be separated with spaces.
bold characters Text that has to be entered as declared.

asix.SQL query language includes only one the command SELECT of the following syntax:

SELECT select_list
FROM var_name
WHERE search_condition
[AGGREGATE aggregate_name [, resample_interva]]
select_list ::= { * | { column_name [AS column_name_alias]}[
,...n] }
column_name ::= { TimeStamp | Status | Value }
search_condition ::= { time_predicate [AND (
value_status_search_condition)] }
time_predicate ::= { TimeStamp BETWEEN date AND date }
value_status_search_condition ::=
 { [NOT] predicate | (value_status_search_condition) }
 [{ AND | OR }
 [NOT] { predicate | (value_status_search_condition)
}] [...n] }
predicate ::=
 { Status { = | < > | ! = } status_value
 | Value { = | < > | ! = | > | > = | ! > | < | < = | ! < }
number
 | Value IS [NOT] NULL }
status_value ::= { qualityGood | qualityUncertain |
qualityUncertainSubNormal |
 qualityBad | qualityBadNoData |
qualityBadNoBound }
aggregate_name ::= { Start | End | Delta | Min | Max |
 Range | Total | Average |
Average0 }

In the SELECT clause the value * means that all three columns in order TimeStamp, Quality, Value are
defined. As option, column_name_alias may be defined as an alternative name, replacing in a query
the column name. Alternative name must not be used in the clause WHERE. If an alternative name
includes spaces or non-alphanumeric characters, it should be closed in brackets.

AsixConnect

92

In the result of a query:

• column TimeStamp will contain the sample time stamp;
• column Quality will contain the sample time quality;
• column Value will contain the value of the sample provided if the quality of the sample is good. If
sample quality takes the value qualityBad, qualityBadNoData or qualityBadNoBound, the value of the
sample will be equal to NULL.

In the FROM clause as the var_name parameter pass the name of one variable of the Asix system. It
is possible to use descriptive identifier (see: 7.2 Operation Without Variable Definitions Database).
The descriptive identifier should be put in quotation marks.

In the WHERE clause as the date parameter pass the string closed in quotation marks containing:
• absolute date in the international format, declared in the operating system;
• absolute date in ODBC yyyymmddhhnnss format;
• relative date in the format described in the section 7.4 OPC Time Format.

As number pass an integer or a real number in decimal format. Decimal separator is a point.

In the AGGREGATE clause as the aggregate name parameter pass the name of one of the available
aggregating method described in the section 7.3 Aggregates. As the sample rate pass the period of
sampling of the variable. The sampling period should be given in the format described in the section
7.4 OPC Time Format with the section keyword omitted. When you omit the sample rate parameter,
the sampling period defined in the Asix system will be used. If the clause AGGREGATE is omitted, the
raw values will be read.

If the clause AGGREGATE is used, the format of read data is the same as given in description of the
ReadProcessed function (7.5.6 ReadProcessed Function) of Automation server of archive data. If the
clause AGGREGATE is omitted, format of read data is the same as given in description of the
ReadRaw function (7.5.5 ReadRaw Function).

7.5.6 Examples of Queries

Read raw values of the variable K8_11U14 from the date 2002-06-16 and time from 8:00 to 8:10
hours. Time is given in Polish format.

select Timestamp, Value from K8_11U14
where Timestamp between ’2002-06-16 8:00:00’

 and ’2002-06-16 8:10:00’

Read raw values of the variable K8_11U14 from the date 2002-06-16 and time from 8:00 to 8:10
hours. Time is given in ODBC format. Time stamp, quality and value of the sample are returned.

7 Archive Data

93

select * from K8_11U14
where Timestamp between ’2002-06-16 8:00:00’

and ’2002-06-16 8:10:00’

Read raw values of the variable K8_11U14 from the previous hour. The variable name in example is
closed in brackets. Brackets should be used when the variable name includes characters other than
letters, digits and underscore.

select Timestamp, Value from [K8_11U14]
where Timestamp between ’hour-2h’ and ’hour-1h’

Read 5-minute average values of a variable from the current hour.

select * from K8_11U14
where Timestamp between ’hour-1h’ and ’hour’
aggregate Average, ’5m’

Read minimum values of a variable for one-hour periods from the previous day.

select * from K8_1 U14
where Timestamp between ’day-1d’ and ’day’
aggregate Min, ’1h’

Read minimum values of a variable for one-hour periods from the previous day.

select * from K8_11U14
where Timestamp between ’day-1d’ and ’day’
aggregate Min, ’1h’

Read 5-minute average values of a variable from the previous day. Select sample values less than 66
only.

select * from K8_11U14
where Timestamp between ’day-1d’ and ’day’ and value < 66
aggregate Average, ’5m’

Read 5-minute average values of a variable from the current hour. Select samples of good quality
only.

select * from K8_11U14
where Timestamp between ’hour’ and ’hour+1h’

and quality = qualityGood
aggregate Average, ’5m’

Read 5-minute average values of a variable from the previous and current hour. Select samples which
value is accessible (quality is not bad).

select * from K8_11U14
where Timestamp between ’hour-1h’ and ’hour+1h’

and value is not null
aggregate Average, ’5m’

AsixConnect

94

Read raw values for K8_11U14 from 2002-06-16 for the period from 8:00 to 16:00. Select samples
with values less than 63 or higher than 73.

select Timestamp, Value from K8_11U14
where Timestamp between ’2002-06-16 8:00:00’

 and ’2002-06-16 9:00:00’
and (value < 63 or value > 73)

7.7 NET Server

7.7.1 Application of Server

The ServerHT class enables access to the functional part of the Asix system related to the archive
data. When you are going to perform operations on archive data with use of ServerHT, you should
carry out the following steps.

• Install the AsixConnect package.
• Obtain the Variable Definition Database of the Asix system from which the current data are to be
retrieved or generate such a base.
• Using Configurator program, configure the basic channel or establish and configure your own
channel.
• Generate the project in Visual Studio package and then:

o highlight the References directory in the project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet.dll file in the
c:\asix subdirectory, click on OK and close the Add Reference window. In every file with C# source
code, the following line should be added in the using declaration area:

using XConnectNet;

• Develop a program operating on ServerHT. In this program, you need to:

o create an object of the ServerHT type, giving as a parameter the name of the previously
configured channel;
o using the ReadRaw and ReadProcessed functions, execute the data exchange;
o during data exchange, you should remember about handling of exceptions as they may be
reported by the server.

7.7.2 ServerHT Designer

 [C#]
public ServerHT(

7 Archive Data

95

 string channelName);

This function is used to create and initiate an object of the ServerHT class.

As the channelName parameter, the channel name should be given (see: 3 Connection
Configuration).

7.7.3 Dispose Function

 [C#]
public void Dispose();

This function is used for releasing the resources used by the ServerHT object. This function must be
called when the use of the ServerHT object has been finished. Calling must take place from the same
thread the object was created in.

7.7.4 Init Function

[C#]
public void Init(
 string initString);

This function is designed for setting the server parameters. For description of the function, see 3.5
Program Configuration, and for available options, see the following sections.

7.7.5 ReadRaw Functions

 [C#]
public ReadRawResult ReadRaw (
 string itemID,
 DateTime periodStart,
 TimeSpan periodLen);

The ReadRaw function is used to read archive, raw values of process variables from a specified time
period. It is designed for clients that want to read real values saved in the archive. The function
supplies limit values to interpolate, when required, values of the variables at the beginning and end
of period for which data is to be displayed.

itemID is an entry parameter; it should contain the variable identifier for which samples are to be
read.

AsixConnect

96

periodStart and periodLen are entry parameters, which should contain, respectively, beginning and
length of a period from which data are to be read.

After the read operation has been finished, the result is returned in the form of the ReadRawResult
class object.

The function returns limit values for given period of time as well. If in the archive the sample,
corresponding exactly to the time point defined by the parameter dateTimeFrom, was not registered,
the latest sample before that time is returned. If in the archive the sample, corresponding exactly to
the time point defined by the parameter dateTimeTo, was not registered, the latest sample after that
time is returned. If it is not possible to retrieve limit values from the archive, the sample for which
quality parameter takes the value Quality Bad - No Bound is returned.

7.7.6 ReadProcessed Functions

[C#]
public ReadProcessedResult ReadProcessed (
 string itemID,
 Aggregate itemAggregate,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval);
public ReadProcessedResult[] ReadProcessed (
 string[] itemIDs,
 Aggregate[]itemAggregates,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval);
public void ReadProcessed(
 string[] itemIDs,
 Aggregate[]itemAggregates,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval,
 HTDataSetFlags dataSetFlags,
 out bool allOk,
 out DataSet dataSet);

Thje ReadProcessed function calculates, in defined period of time and for given process value, the
aggregates (such as beginning or average value) from data included in the Asix system archive.

itemID is an entry parameter; it should contain the identifier of a variable which samples are to be
read. In the second and third version of the function the itemIDs parameter is used and its value
should be a table of variable identifiers.

The itemAggregate parameter should contain the aggregate type which is to be used for processing
of raw archive values. In the second and third version of the function the itemAggregates parameter

7 Archive Data

97

is used and its value should be a table of aggregates. How to calculate aggregates, see 7.3
Aggregates. The list of supported aggregates is given in the table below.

Table. The List of Handled Aggregates Calculated by the ’ReadProcessed’ Function (Using .NET Server
/ Archive Data).

Identifier Method of Aggregate Calculation

Aggregate.Start Value on the beginning of interval.

Aggregate.End Value on the end of interval.

Aggregate.Delta Difference of values from the end and beginning of interval.

Aggregate.Min Minimum value in interval.

Aggregate.Max Maximum value in interval.

Aggregate.Range Difference between maximum end minimum values in interval.

Aggregate.Total Sum of time weighted values in interval (time integral).

Aggregate.Average Average from time weighted values in interval.

Aggregate.Average0 Average from time weighted values in interval. For periods when
the value of variables is not accessible, 0 value is used.

periodStart and periodLen are entry parameters, which should contain, respectively, the beginning
and length of a period from which data are to be read.

resampleInterval is an output parameter and should contain the length of interval for which the
aggregates are calculated.

The third version of the ReadProcessed function contains the dataSetFlags parameter. A constant of
the HTDataSetFlags type should be passed as the value of the parameter.

Table. Constants of the ’HTDataSetFlags’ Type for the ’ReadProcessed’ Function (for the .NET Server /
Archive Data).

Constant Description

HTDataSetFlags
.Default

There is one column, named as a variable name, created in the HTData
table for each value in the itemIDs parameter. If a variable name recurs,
then suffixes ’-1’, ’-2’, etc are added to successive repetitions.

Values of sample variables will be inserted into this column. If sample
quality is good, the DBNull value is put into the column.

The HTData table also includes one column named TimeStamp with a
time stamp of samples.

HTDataSetFlags
.ShowQuality

For all variables (without the value column) will be inserted the column
with a sample quality into the HTDataSet table. This column has a name
composed of a variable name with the text

’-Quality’ added.

AsixConnect

98

HTDataSetFlags.

ShowErrorString
WhenReadError

There is an error description inserted into the column if read error occurs.
If the flag is not used, the null value is inserted.

After the read operation has been finished, the result is returned in the form of the
ReadProcessedResult class object for the first version of the function or in the form of array of the
ReadProcessedResult class objects for the second version of the function. The third version of the
function contains two output parameters: allOk and dataSet. The allOk parameter determines
whether the read operations for all variables were successful. The dataSet parameter returns the
DataSet class object containing the read archive data.

7.7.7 ReadProcessedAsString Function

[C#]
public ReadProcessedAsStringResult ReadProcessedAsString (
 string itemID,
 Aggregate itemAggregate,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval);
public ReadProcessedAsStringResult[] ReadProcessedAsString (
 string[] itemIDs,
 Aggregate[]itemAggregates,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval);
public void ReadProcessedAsString (
 string[] itemIDs,
 Aggregate[]itemAggregates,
 DateTime periodStart,
 TimeSpan periodLen,
 TimeSpan resampleInterval,
 HTDataSetFlags dataSetFlags
 out bool allOk,
 out DataSet dataSet);

The ReadProcessedAsString functions are mainly used for reading formatted values of variable
samples.

Operation of the ReadProcessedAsString function as well as its parameters are the same as in the
ReadProcessed function. The only difference is that the result is returned in the form of
ReadProcessedAsStringResult structures for the first version of the function or in the form of array of
ReadProcessedAsStringResult structures for the second version of the function.

7 Archive Data

99

The third version of the function contains two output parameters: allOk and dataSet. The allOk
parameter determines whether the read operations for all variables were successful. The dataSet
parameter returns the object of DataSet class containing the read archive data.

7.7.8 RelativeDateTime Function

 [C#]
public DateTime RelativeDateTime (
 string time,
 DateTime now);

The RelativeDateTime function converts the time given in relative format into absolute time.

7.7.9 RelativeTimeSpan Function

 [C#]
public TimeSpan RelativeTimeSpan (
 string time,
 DateTime now);

The RelativeTimeSpan function converts the period length given in relative format into absolute
length.

7.7.10 ReadRawResult Class

The object of the ReadRawResult class is designed for transferring the result of execution of the
ReadRaw function.

Declaration of the ReadRawResult class is as follows:

public class ReadRawResult
{
 public bool ReadSucceeded();
 public Int32 ReadResult;

AsixConnect

100

 public string ErrorString;
 public string ItemID;
 public DateTime PeriodStart;
 public TimeSpan PeriodLen;
 public ItemSample []Samples;
};

After execution of the archive data reading function has been finished, the contents of the structure
is as follows.

Table. The Contents of the Structure for the ’ReadRawResult’ Class Declaration (for the .NET Server /
Archive Data).

Field Content

ReadSucceeded() The function turns back the value true if the value of the ReadResult
field indicates that read or write operation has ended with success.

ReadResult Code of read operation end. The value less then 0 denotes an error.

ErrorString Textual description code of the read operation end.

ItemID Name of the variable which the read operation refers to.

PeriodStart Beginnig of the period from which archived data were read.

PeriodLen Span of the period from which archived data were read.

Samples Read archival data.

7.7.11 ReadProcessedResult Class

The object of the ReadProcessedResult class is designed for transferring the result of execution of the
ReadProcessed function.

Declaration of the ReadProcessedResult class is as follows:

public class ReadProcessedResult
{
 bool ReadSucceeded();
 Int32 ReadResult;
 string ErrorString;
 string ItemID;
 Aggregate ItemAggregate;
 DateTime PeriodStart;
 TimeSpan PeriodLen;
 TimeSpan ResampleInterval;
 ItemSample []Samples;
};

7 Archive Data

101

After execution of the archive data reading function has been finished, the contents of the structure
is as follows.

Table. The Contents of the Structure for the ’r;ReadProcessedResult’r; Class Declaration (for the .NET
Server / Archive Data).

Field Content

ReadSucceeded() The function turns back the value true if the value of the ReadResult
field indicates that read or write operation has ended with success.

ReadResult Code of read operation end. The value less then 0 denotes an error.

ErrorString Textual description code of read operation end.

ItemID Name of the variable which read operation refers to.

ItemAggregate Name of variable aggregate.

PeriodStart Beginnig of the period from which archived data were read..

PeriodLen Span of the perod from which archived data were read.

ResampleInterval Interval span, for which aggregates are calculated.

Samples Read archival data.

7.7.12 ReadProcessedAsStringResult Class

The object of the ReadProcessedAsStringResult class is designed for transferring the result of
execution of the ReadProcessedAsString function.

Declaration of the ReadProcessedAsStringResult class is as follows:

public class ReadProcessedAsStringResult
{
 public bool ReadSucceeded();
 public Int32 ReadResult;
 public string ErrorString;
 public string ItemID;
 Aggregate ItemAggregate;
 public DateTime PeriodStart;
 public TimeSpan PeriodLen;
 public TimeSpan ResampleInterval;
 public ItemStringSample []Samples;
};

The meaning of the fields is the same as in the ReadProcessedResult class. The only difference is a
type of the Samples field.

AsixConnect

102

7.7.13 ItemSample Structure

The objects of the ItemSample structure are designed for transferring the values of archive variables.
They are used by the ReadRawResult and ReadProcessedResult classes.

Declaration of the ItemSample structure is as follows:

public struct ItemSample
{
 public DateTime TimeStamp;
 public Int32 Quality;
 public double ItemValue;

 public bool IsQualityGood();
};

After the execution of the archive data reading function has been finished, the contents of the
structure is as follows.

Table. The Contents of the 'ItemSample' Structure (for the .NET Server / Archive Data).

Field Content

TimeStamp Time stamp of the variable sample; local time is used.

Quality Quality of the variable sample. Good or uncertain quality means
that ItemValue field is filled.

ItemValue Variable values; the field is of double type.

IsQualityGood() Function turns back the true value if the value of Quality field
indicates the variable state quality to be good.

The sample quality may take one of the values described in section 5.2 Measurement Quality. In
addition, in case of bad quality the flags specific to archive data may be set. These flags are within
the range of bit numbers 16-31.

Table. The Flags Specific to Archive Data in Case of Bad Quality for the ’ItemSample’ Structure (for
the .NET Server / Archive Data).

Bit Value Definition Description
0x00100000 Quality Bad - No

Bound

The limitary value can not be passed because
the archive is not available for the time
moment corresponded to this limitary time
moment.

0x00200000 Quality Bad - No Data Process variable value is not available
because the archive with data from the
precise time period is not available.

0x01000000 Asix Archive End Process variable value is not available
because it found the end of the archive when
reading the data (reading the data from the

7 Archive Data

103

period that does not occur yet or no timer
synchronization between a client computer
and the Asix system station).

7.7.14 ItemStringSample Structure

The object of the ItemStringSample type is designed for transferring the values of archive variables as
texts. The ItemStringSample structure is used by the ReadProcessedAsStringResult class.

Declaration of the ItemStringSample structure is as follows:

public struct ItemStringSample
{
 public DateTime TimeStamp;
 public Int32 Quality;
 public string ItemValue;

 public bool IsQualityGood();
};

After the execution of the archive data reading function has been finished, the contents of the
structure is as follows:

Table. The Contents of the ’ItemStringSample’ Structure (for the .NET Server / Archive Data).

Field Content

TimeStamp Time stamp of the variable sample; local time is used.

Quality Quality of the variable sample. Good or uncertain quality means
that the ItemValue field is filled.

ItemValue Variable values; the field is of string type.

IsQualityGood() Function turns back the true value if the value of the Quality field
indicates the variable state quality to be good.

7.7.15 ItemProcessedSample Structure

The object of the ItemProcessedSample type is designed for transferring the values of archive
variables. The ItemProcessedSample structure is used by the ReadProcessedResult class.

Declaration of the ItemProcessedSample structure is as follows:

AsixConnect

104

public struct ItemProcessedSample
{
 public DateTime StartTimeStamp;
 public DateTime EndTimeStamp;
 public Int32 Quality;
 public double ItemValue;

 public bool IsQualityGood();
};

After the execution of the archive data reading function has been finished, the contents of the
structure is as follows:

Table: The Result of the 'ItemProcessedSample' Structure Declaration After Completion of the Archival
Data Read Function (for the .NET Server / Archive Data).

Field Content

StartTimeStamp The time stamp of the interval beginning of
data used to calculate the sample; local time is
used.

EndTimeStamp The time stamp of the interval end of data
used to calculate the sample; local time is
used.

Quality Quality of the variable sample. Good or
uncertain quality means that the ItemValue
field is filled.

ItemValue Variable values; the field is of double type.

IsQualityGood() Function turns back the true value if the value of
the Quality field indicates the variable state
quality to be good.

Jakość próbki może przyjąć jedną z wartości opisanych w rozdziale Jakość pomiaru (patrz: punkt 5.2.).
 Ponadto w przypadku jakości złej mogą być ustawione flagi specyficzne dla danych archiwalnych.
Flagi te mieszczą się w zakresie numerów bitów 16-31 (szczegóły - patrz: poniższa tabela).

The sample quality may take one of the values described in section 5.2 Measurement Quality. In
addition, in case of bad quality the flags specific to archive data may be set. These flags are within
the range of bit numbers 16-31. See the table below.

Table: The Flags Specific to Archive Data in Case of Bad Quality for the ’ItemSample’ Structure (for
the .NET Server / Archive Data).

Bit Value Definition Description

0x00100000 Quality Bad - No Bound The limitary value can not be
passed because the archive is
not available for the time
moment corresponded this
limitary time moment.

7 Archive Data

105

0x00200000 Quality Bad - No Data Process variable value is not
available because the archive
with data from the precise
time period is not available.

0x01000000 Asix Archive End Process variable value is not
available because it found the
end of archive when reading
the data (reading the data from
the period that does not occur
yet or no timer synchronization
between a client computer and
the Asix system station).

7.7.16 DataSet Object

The object of the DataSet class is designed for returning archive data by the ReadProcessed and
ReadProcessedAsString functions. The DataSet objects contain two tables: HTData and ReadResult.

The HTData table contains archive data. The first column of the table is named TimeStamp and
contains time stamp of samples. For every value in the itemIDs parameter of the ReadProcessed
function one column of values with the name identical to the variable name is created in the HTData
table. If the variable name repeats, the repeated names are suffixed - '-1', '-2', etc. In this column, the
values of variable samples are placed. If sample quality is not good, the value DBNull is placed in the
column. In the table, for every variable the column of sample quality may be inserted too. The name
of this column consists of the variable name with the suffix '-Quality'.

In case of the ReadProcessed function the HTData table contains data in the floating-point format; in
case of the ReadProcessedAsString function the HTData table contains text-type data.

The ReadResult table contains information on readout operation for individual variables. The table
contains the following columns described below.

Table. Columns of the ’ReadResult’ Table for the ’DataSet’ Object (for the .NET Server / Archive Data).

Field Content

ColumnID Name of HTData table column referred to a given variable.
ItemID Name of the variable which the read operation refers to.
ItemAggregate Name of the variable aggregate.
PeriodStart Beginnig of the period from which archived data were read.
PeriodLen Span of the period from which archived data were read.
ResampleInterval Interval span for which aggregates are calculated.
ReadResult Code of the read operation end. The value less then 0 denotes an

error.
ErrorString Textual description code of the read operation end.

AsixConnect

106

7.7.17 Operation in ASP.NET Eenvironment

In case of operation in the ASP.NET environment, the object should be created using the
ServerHT.ServerPool.Get() expression. The ServerPool object is a static field of the ServerHT class and
implements the pool of current data servers. Using the Get function, every time before generation of
the page the ServerHT object should be retrieved. Declaration of the Get function is as follows:

 [C#]
public ServerHT Get ();

After the generation has been completed, the server must be returned to the pool with use of the
ServerHT.ServerPool.Release() expression. As the Release function parameter the server returned to
the pool should be passed. Declaration of the Release function is as follows:

 [C#]
public Release (ServerHT server);

The server may also be taken from the pool in the beginning of each function and returned in the end
of the function. To ensure that each server is returned to the pool, the main code of the function
must be included in the try block and the server should be returned to the pool in the finally block.

private void Page_Load(object sender, System.EventArgs e)
{
 ServerHT server = null;
 try
 {
 server = ServerHT.ServerPool.Get();
 // function code, e.g.:
 ChartXMLData.InsertChartHTML ("chart.tee",
Chart1); ChartXMLData chartXMLData = new ChartXMLData();
 chartXMLData.Add (serverHT, "KW_A000", Aggregate.Start,
"KW_A000",
 HTChartFlags.Default, "1M");
 chartXMLData.Add (serverHT, "KW_A008", Aggregate.Average,
"KW_A000",
 HTChartFlags.Default, "1M");
 chartXMLData.SetChartPeriod (serverHT, "DAY-24H", "24H");
 chartXMLData.ReadData (serverHT, XMLIsland1);
 }
 catch(Exception e)
 {
 // handling of exceptions reported when getting the server
from the pool and
 // during the function operation
 }
 finally
 {
 if (server != null)
 ServerHT.ServerPool.Release(server);
 } }

7 Archive Data

107

Pool of servers:

• creates several objects of the ServerHT class for the application (the channel name is retrieved
from Web.Configfile, see 3.2 How to Specify the Channel Name);
• stores the objects in a cache memory of an ASP.NET application;
• makes the objects available for successive calls under an ASP.NET application;
• reports the PoolApplicationException exception when the pool of servers has reached its
maximum size and there is no free server.

108

8 Alarms

8.1 .NET Server

8.1.1 Application of Server

The ServerAL class enables access to the functional part of the Asix system related to alarms. When
you are going to operate on alarms with use of ServerAL, you should carry out the following steps.

• Install the AsixConnect package.
• Using Configurator program, configure the basic channel or establish and configure your own
channel.
• Generate the project in the Visual Studio package and then:

o highlight the References directory in the project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet.dll file in the
c:\asix subdirectory, click on OK and close the Add Reference window. In every file with C#
source code, the following line should be added in the using declaration area:

using XConnectNet;

• Develop a program operating on ServerAL. In this program, you need to:
o create an object of the ServerAL type, giving as a parameter the name of the previously
configured channel,
o using the ReadActive and ReadHistorical functions, program the data exchange;
o during data exchange, you should remember about handling of exceptions as they may
be reported by the server.

8.1.2 ServerAL Designer

 [C#]
public ServerAL(
 string channelName);

This function is used to create and initialize the object of the ServerAL class.

As the channelName parameter, the channel name should be given (see: 3 Connection
Configuration).

8 Alarms

109

8.1.3 Dispose Function

[C#]
public void Dispose();

This function is used for releasing the resources used by the ServerAL object. This function must be
called after the use of the ServerAL object has been finished. Calling must take place from the same
thread the object was created in.

8.1.4 Init Function

 [C#]
public void Init(
 string initString);

This function is designed for setting server parameters. For description of the function, see 3.5
Program Configuration, and for available options, see the following sections.

8.1.5 ReadActive Functions

[C#]
public Alarm[] ReadActive();
public Alarm[] ReadActive(
 AlarmType alarmType,
 AlarmStatus alarmStatus,
 string textMask,
 int[] groups);

The ReadActive function is designed for retrieving information on active alarms in an Asix system
application.

The first version of the ReadActive function returns all active alarms. The second version of the
ReadActive function enables filtration of retrieved active alarms by giving the type of alarms, status
of alarms, mask of alarm text and tables of alarm group numbers.

The alarmType parameter defines the required alarm type. One of the constants described in the
table below or the bit sum of these constants should be given as its value.

Table. Constants of the 'alarmType' Parameter for the ’r;ReadActive’ Function for Retrieving the
Information on Alarms.

AsixConnect

110

Constant Description

AlarmType.NoFiltering Filtering by the alarm type is switched off

AlarmType.System System alarms

AlarmType.Message Messages

AlarmType.Warning Warnings

AlarmType.Alarm Alarms

AlarmType.ImportantAlarmr Important alarms

AlarmType.All Bit sum of all types of alarms

The alarmStatus parameter defines the required status of the alarm. As its value one of the constants
described in the table below or the bit sum of these constants should be given.

Table. Constants of the 'alarmStatus' Parameter for the ’ReadActive’ Function for Retrieving the
Information on Alarms.

Constant Description

AlarmStatus.NoFiltering Filtering by alarm status is switched off

AlarmStatus.Started Alarm started

AlarmStatus.Fished Alarm finished

AlarmStatus.Acknowledged Alarm acknowledged

AlarmStatus.NotAcknowledged Alarm not acknowledged

AlarmStatus.All Bit sum of all types of alarm statuses

If the alarmsStatus parameter is to include one of the Started, Finished, Acknowledged or
NotAcknowledged flags, you should remember to simultaneously use at least one of the Started or
Finished flags and at least one of the Acknowledged or NotAcknowledged flags.

As the textMask parameter you should give the mask of alarm text, i.e. a fragment of the text that
must appear in the alarm description so that the ReadActive function will return the alarm. The
pattern is case-sensitive. The pattern may include special characters ’*’ and ’?’. The ’*’ character
means that any number of characters may appear in its place in the alarm description. The ;?’
character means that any one character may appear in its place in the alarm description. The most
typical patterns are:

text -corresponds to alarms which description starts with text,
*text - corresponds to alarms which description includes a text in any place.

As groups parameter the table of the alarm group numbers should be given. The table may include
up to 10 elements. If empty table or null value is given as groups parameter, then filtration by groups
will not be applied.

8 Alarms

111

8.1.6 ReadHistorical Functions

[C#]
public Alarm[] ReadHistorical (
 DateTime periodStart,
 TimeSpan periodLen,
 int maxNumberOfAlarms);
public Alarm[] ReadHistorical (
 DateTime periodStart,
 TimeSpan periodLen,
 int maxNumberOfAlarms,
 AlarmType alarmType,
 AlarmStatus alarmStatus,
 string textMask,
 string idRange,
 int[] groups);

The ReadHistorical function is designed for retrieving information on historical alarms registered in
the alarm archive of the Asix system application. A part of parameters of these functions is the same
as parameters of the ReadActive function described in the previous section.

The periodStart and periodLen parameters to define the period from which alarms are to be
retrieved.

The maxNumberOfAlarms parameter allows the maximum number of retrieved alarms to be limited.

The idRange parameter allows the range of retrieved alarms to be limited only to those defined
precisely by numbers. You may declare the list of numbers separated with comma (e.g. 2,34,789), the
range of alarm numbers (e.g. 3-128,300-572) or combine both the methods for specification of
alarms to be displayed (e.g. 2,4,5-89).

8.1.7 Alarms2DataSet Function

 [C#]
public static DataSet Alarms2DataSet(
 Alarm[] alarms,
 bool ascending);

The Alarms2DataSet function allows the object of the DataSet class to be created on the basis of the
data stored in the table of the Alarm type structures.

The table of the Alarm type structures is usually the result of execution of the ReadActive or
ReadHistorical function. This table should be passed as the first parameter of the Alarms2DataSet
function.

AsixConnect

112

The second parameter of the Alarms2DataSet function named ascending defines whether the data
about alarms will be entered into a DataSet object as sorted out in the ascending or descending
order. Sorting out takes place by the alarm time.

The resulting object of the DataSet type contains one table named ALData.

8.1.8 Alarm Structure

The objects of the Alarm structure are designed for transferring the values of alarms. They are used
by the ReadActive and ReadHistorical functions.

Declaration of the Alarm structure is as follows:

[C#]
public struct Alarm
{
 public int Id;
 public String Text;
 public DateTime TimeStamp;
 public AlarmType AlarmType;
 public AlarmStatus AlarmStatus;
};

After execution of the ReadActive or ReadHistorical functions has been finished, the contents of the
Alarm structure is as follows:

Table. The Contents of the ’r;Alarm’ Structure.

Field Content

Id Alarm number

Text Alarm text

TimeStamp Time stamp; local time is used

AlarmType Alarm type

AlarmStatus Alarm status

8 Alarms

113

8.1.9 Operation in ASP.NET Environment

In case of operation in the ASP.NET environment, the object should be created using the
ServerAL.ServerPool.Get() expression. The ServerPool object is a static field of the ServerAL class and
implements the pool of current data servers. Using the Get function, every time before generation of
the page the ServerAL object should be retrieved. Declaration of the Get function is as follows:

 [C#]
public ServerAL Get ();

After the generation has been completed, the server must be returned to the pool with use of the
ServerAL.ServerPool.Release() expression. As the Release function parameter the server returned to
the pool should be passed. Declaration of the Release function is as follows:

 [C#]
public Release (ServerAL server);

The server may also be taken from the pool in the beginning of each function and returned in the end
of the function. To ensure that each server is returned to the pool, the main code of the function
must be included in the try block and the server should be returned to the pool in the finally block.

private void Page_Load(object sender, System.EventArgs e)
{
 ServerAL server = null;
 try
 {
 server = ServerAL.ServerPool.Get();
 // function code
 }
 catch(Exception e)
 {
 // handling of exceptions reported when getting the server from
the pool and
 // during the function operation
 }
 finally
 {
 if (server != null)
 ServerAL.ServerPool.Release(server);
 } }

Pool of servers:

• creates several objects of the ServerAL class for the application (the channel name is retrieved
from the Web.Config file, see: 3.2 How to Specify the Channel Name);
• stores the objects in the cache memory of the ASP.NET application;
• makes the objects available for successive calls under an ASP.NET application;
• reports the PoolApplicationException exception when the pool of servers has reached its
maximum size and there is no free server.

114

9 Reports

9.1 .NET Server

9.1.1 Application of Server

The ServerRP class enables access to the reports generated in the Asix system. When you are going
to operate on the .NET server, you should carry out the following steps.

• Install the AsixConnect package.
• Using the Configurator program, configure the basic channel or establish and configure your
own channel.
• Generate the project in the Visual Studio package and then:

o highlight the References directory in the project tree, select the Add Reference command
from the Project menu, click on the Browse button and select the XConnectNet.dll file in the
c:\asix subdirectory, click on OK and close the ’Add Reference’ window. In every file
with the C# source code, the following line should be added in the using declaration area:

using XConnectNet;

• Develop a program operating on ServerRP. In this program, you need to:
o create object of the ServerRP type, giving as a parameter the name of the previously
configured channel;
o using the server function retrieve the information on reports and reports themselves;
o during retrieving the information, you should remember about handling of exceptions as
they may be reported by the server.

9.1.2 Configuration of Report Definition Files

For proper reporter operation you should configure the files of report definition. It consists in adding
the row of information including the report group name and duration of report generation into these
files. This information is used by the functions retrieving informations on reports and definition files
(described below).

The full syntax of the information row is as follows:

 comment_character REPORT_INFO=GROUP:Name; PERIOD:Length

where:
comment_character - depending on the definition file format, it is necessary to use a proper
comment character in accordance with the following table;

9 Reports

115

Table. Comment Characters Used for Configuration of Report Definition Files.

File Type (Extension) Comment Character
File of report definition (*.r) /

VBScript (*.vbs) ’ or //
JavaScript (*.js) //

Name - report group name (it corresponds to tree nodes);
Length - duration of report generation (it corresponds to ”r;leaves” of a tree). The following
values are acceptable:
• D - day
• W - week
• M - month
• Q - quarter
• Y - yer
• O - other

EXAMPLE

/ REPORT_INFO = GROUP:Zduny; PERIOD:D

9.1.3 ServerRP Designer

[C#]
public ServerRP(
 string channelName);

This function is used to create and initialise the object of the ServerRP class.

As channelName the channel name should be passed (see: 3 Connection Configuration).

9.1.4 Dipsose Function

[C#]
public void Dispose();

This function is used for releasing the resources used by the ServerRP object. The function must be
called after the use of the ServerRP object has been finished. Calling must take place from the same
thread the object was created in.

AsixConnect

116

9.1.5 Init Function

Type topic text here.

9.1.6 GetReportsInfo Function

[C#]
public ReportInfoNet[] GetReportsInfo(
 string group,
 int period,
 bool lastReportsOnly);

The GetReportsInfo function is designed for retrieving the information on reports generated in an
Asix system application. The result of function operation is returned in the ReportInfoNet structure.

The group parameter determines the group the reports will be read from. Passing the ”*”
 value will cause readout of all reports (apart from the period parameter value).

The period parameter defines the report period. The following values of a report period are possible.

Table. Values of a Report Period.

Value Description
-1 Any reports
0 Twenty-four hours reports
1 Weekly reports
2 Monthly reports
3 Quarterly reports
4 Annual reports
5 Reports with indefinite period

The lastReportsOnly parameter determines whether all reports or only one (the latest) have to be
returned in case when there are a few reports applying to the same period.

9 Reports

117

9.1.7 ReadReportsInfo Function

[C#]
public DataSet ReadReportsInfo(
 string group,
 int period,
 bool lastReportsOnly);

The ReadReportsInfo function operates in the same way as the GetReportsInfo function. The
difference is that informations on reports are returned in the DataSet class object.

The result object of DataSet type includes one table named ReportsInfo.

9.1.8 GetDefFilesInfo Function

[C#]
public DefFileInfoNet[] GetDefFileInfo();

The GetDefFileInfo function is designed for retrieving the information on all files of report definitions.
The result of the function operation is returned in the DefFileInfoNet structure.

9.1.9 ReadDefFilesInfo Function

[C#]
public DefFileInfoNet[] GetDefFileInfo();

The operation of the ReadDefFilesInfo function is the same as the GetDefFilesInfo one. The difference
is that informations on reports are returned in the DataSet class object.

The result object of the DataSet type includes one table named DefFilesInfo.

9.1.10 GetReportsDirectoryPath Function

[C#]
public string GetReportsDirectoryPath();

AsixConnect

118

The function returnes the path to the application report directory.

9.1.11 ReportInfoNet Structure

The ReportInfoNet structure is designed for storing the information on reports.

The structure declaration is as follows:

public struct ReportInfoNet
{
 String FileName;
 String ReportName;
 DateTime ReportDate;
 DateTime FileDate;
 long FileSize;
 int ReportFormat;
 int ReportType;
 int ReportPeriod;
 String ReportGroup;
};

After the operation of the function for reading the information on reports has been finished, the
structure has the following content:

Table. Contents of the 'ReportInfoNet' Structure.

Field Content
FileName Name of the report file
ReportName Report name
ReportDate Report date
FileDate Date of report file creation
FileSize File size
ReportFormat Format of the report file (TXT/HTML)
ReportType Report type (script/disk)
ReportPeriod Report period (for more information see:

GetReportsInfo Function)
ReportGroup Report group

9 Reports

119

9.1.12 DefFileInfoNet Structure

The DefFileInfoNet structure is designed for storing the information on files of report definitions. The
structure declaration is as follows:

public struct DefFileInfoNet
{
 String FileName;
 int ReportPeriod;
 String ReportGroup;
};

The structure stores the information on name, period and group of the report definition file. The
available values of ReportPeriod you can find in 9.1.6 GetReportsInfo Function.

9.1.13 Operation in ASP.NET Environment

In case of operation in the ASP.NET environment, the object should be created using the
ServerRP.ServerPool.Get() expression. The ServerPool object is a static field of the ServerAL class and
implements the pool of current data servers. Using the Get function, every time before generation of
the page the ServerRP object should be retrieved. Declaration of the Get function is as follows:

[C#]
public ServerRP Get ();

After the generation has been completed, the server must be returned to the pool with use of the
ServerRP.ServerPool.Release() expression. As the Release function parameter the server returned to
the pool should be passed. Declaration of the Release function is as follows:

[C#]
public Release (ServerRP server);

The server may also be taken from the pool in the beginning of each function and returned in the end
of the function. To ensure that each server is returned to the pool, the main code of the function
must be included in the try block and the server should be returned to the pool in the finally block.

private void Page_Load(object sender, System.EventArgs e)
{
 ServerRP server = null;
 try

AsixConnect

120

 {
 server = ServerRP.ServerPool.Get();
 // function code
 }
 catch(Exception e)
 {
 // handling of exceptions reported when getting the server
from the pool and
 // during the function operation
 }
 finally
 {
 if (server != null)
 ServerRP.ServerPool.Release(server);
 } }

Pool of servers:

• creates several objects of the ServerRP class for the application (the channel name is retrieved
from the Web.Config file, see: 3.2 How to Specify the Channel Name);
• stores the objects in the cache memory of an ASP.NET application;
• makes the objects available for successive calls under an ASP.NET application;
• reports the PoolApplicationException exception when the pool of servers has reached its
maximum size and there is no free server.

121

10 Web Service Server

10.1 Web Service Server

The Web Service server of the AsixConnect package provides access to full functionality of an Asix
system application via XML Web Services protocol.

10.2 Installation

The WebService server is located in c:\asix\WebService directory. In order to make it available within
the network, run the IIS program. This program is available in Start/Control panel/Administrating
tools. In the program window, highlight the Default website item. Select Virtual directory from the
Action/New menu. Wizard is started. As Alias you should enter the text WebService and as Directory -
c:\asix\WebService. The other options are to be left unchanged. By default, on attempt of getting
access to the server, Windows authentication is used. In order to enable the anonymous access,
highlight the newly created virtual directory, select Properties from the Action menu, open the
Protections of directories tab, click on Edit in the Anonymous access field, and enable the Anonymous
access option.

Since then the Web Service server is available from:
http://localhost/WebService/XConnectWebService.asmx.

See http:// localhost /WebService/XConnectWebService.asmx?WSDL for description of the server
services in WSDL language.

The Web Service server provides data on the local level only. In order to be able to provide data via
the local area network or Internet, you need to purchase the Asix4Internet licence.

10.3 Web.Config Configuration File

For storage of default channel name the Web Service server uses the configuration file named
Web.Config. This file located in c:\asix\WebService directory. Method of defining the channels is
described in section 3.1 Channels.

In order to define the default channel name, you should create the appSettings element in
Web.Config file in the superior element. Then, one add element should be created in the appSettings
element and two attributes should be defined in it. The first attribute should be named key and
assigned the value "DefaultChannelName". The latter attribute should be named value and assigned
the channel name as the value. The channel name should be put in quotation marks.

AsixConnect

122

EXAMPLE
<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
 <appSettings>
 <add key=”DefaultChannelName” value=”AsEmis” />
 </appSettings>
...

If the WebService server supplies data for dynamic HTML pages, than the Control variable and Limits
of variables options should be enabled in the channel.

10.4 Clients

10.4.1 Internet Explorer

The simplest way to test the Web Service server for correct operation is to use the Internet Explorer
browser as the server client. After the server is configured, run the browser and open the site:

 http://localhost/WebService/XConnectWebService.asmx

The loaded page contains the list of all functions made available by the server. After a function is
selected, information on this function is displayed. In addition, for some of the functions the fields
where you may enter the function parameters / Call button are displayed.

Using the Internet Explorer browser, you may call only these functions that use simple types in
parameters and results. After a function is selected and the Call button is pressed, a new page
containing the result of execution of the function is opened. The result is given in XML format. The
functions that may be called using a browser are: Read, ReadRaw, ReadProcessed, ReadActiveAlarms,
and ReadHistoricalAlarms. For parameters that require the date, you should use the
yyyy/mm/ddThh:mm:ss format (for example, 2004/07/13T01:00:00).

10.4.2 WebForm Application

First of all, the WebForm Visual Studio 2003 application, which is to use the WebService server, must
contain the reference to this server. To do so, after the project is generated, you need to:

• highlight the Reference directory in the project tree;
• select Add Web Reference from the Project menu;
• write URL address from which the WebService server is available, i.e.
http://localhost/WebService/XConnectWebService.asmx and click on Go;
• pass Asix as the reference name and click on Add Reference.

10 Web Service Server

123

The WebService server requires the client to handle the cookie mechanism. To enable this
mechanism, after the server object of the Asix.XConnectWebService type is created in the
application, you should assign the object of the System.Net.CookieContainer type to its
CookieContainer properties.

Asix.XConnectWebService server;
server = new Asix.XConnectWebService();
server.CookieContainer = new System.Net.CookieContainer();

The object of the Asix.XConnectWebService class contains all functions of the WebService server. The
following example presents the operation of reading the current value of KW_A110 variable from the
server.

Asix.ItemStateWS itemStateWS = server.Read("KW_A110");
if (itemStateWS.ReadResult >= 0)
{
 // readout succeeded
 // value
 textBox1.Text = itemStateWS.ItemValues[0].ToString ();
 // quality
 textBox2.Text = "0x" + System.Convert.ToString
(itemStateWS.Quality, 16).PadLeft (4,'0');
 // time stamp
 textBox3.Text = itemStateWS.TimeStamp.ToString();
}
else
{
 // readout ended with error
 textBox1.Text = itemStateWS.ErrorString;
 textBox2.Text = textBox3.Text = "";
}

10.5 Variable Definition Database

 [C#]
string[] ReadAttributes(
 string varName,
 string[] attributeNames);
string[][] ReadAttributesN(
 string[] varNames,
 string[] attributeNames);

AsixConnect

124

The ReadAttributes function is used for reading out the values of variable attributes. Its operation is
the same as of the ReadAttributes function of the ServerHT class (see: 4.3.1.5 ReadAttributes
Function).

The ReadAttributesN function is used for reading the values of attributes of many variables. Its
operation is the same as of the ReadAttributesN function of the ServerHT class (see: 4.3.1.6
ReadAttributesN Function).

10.6 Current Data

 [C#]
ItemStateWS Read(
 string itemID);
ItemStateWS[] ReadN(
 string[] itemIDs);

The Read and ReadN functions are designed for reading current values of process variables. As a
parameter of the Read function the variable name is assigned and the function returns the value of
this variable in the form of the ItemStateWS structure. As parameter of the ReadN function the table
of variable names is assigned and the function returns the value of these variables in the form of the
table of the ItemStateWS structures.

ItemStateWS Structure

Objects of the ItemStateWS type are used for transferring values of variables. The ItemStateWS
structure is used by the Read and ReadN functions.

Declaration of the ItemStateWS structure is as follows:

[C#]
public struct ItemStateWS
{
 public String ItemID;
 public Int32 ReadResult;
 public bool ReadSucceeded;
 public String ErrorString;
 public DateTime TimeStamp;
 public Int32 Quality;
 public Object ItemValues;
};

After execution of the Read function has been finished, the contents of the structure is as follows.

10 Web Service Server

125

Table. Contents of the 'ItemStateWS' Structure (Web Service Server).

Field Content

ItemID Variable name.

ReadResult Result of a read variable. Negative value means an error and it is
simultaneously the error code. The 0 or positive value means that
read operation has ended with success and fields TimeStamp, Quality
and ItemValue are filled.

ReadSucceeded The function turns back the true value if the value of the ReadResult
field indicates that read operation has ended with success.

ErrorString Textual description of the error code included in the ReadResult field.

TimeStamp Time stamp of measurement. Local time is used.

Quality Measurement quality.

ItemValues Values of measurement. The field is of the object type and includes
value table of the type that corresponds to the read variable. Most
often it is a 1-element table. Only in case of tables or when reading
the variable including the BarCVs phrase in its identifier, the field
includes multi-element table.

10.7 Raw Archive Data

 [C#]
ReadRawResult ReadRaw(
 string itemID,
 DateTime periodStart,
 int periodLenS);

The ReadRaw function is designed for reading raw archive values of process variables from a
specified period. Its operation is the same as of the ReadRaw function of the ServerHT object
described in section 7.7.5 ReadRaw Functions.

10.8 Aggregated Raw Data

[C#]
ReadProcessedResult ReadProcessed(
 string itemID,
 Aggregate itemAggregate,
 DateTime periodStart,
 int periodLenS,

AsixConnect

126

 int resampleIntervalS);
ReadProcessedResult [] ReadProcessedN(
 string[] itemIDs,
 Aggregate[] itemAggregates,
 DateTime periodStart,
 int periodLenS,
 int resampleIntervalS);

The ReadProcessed function calculates aggregates for a given process variable in a defined period. Its
operation is the same as of the ReadProcessed object of the ServerHT class (see: 7.5.6 ReadProcessed
Function). It only differs in the method of giving the length of period and the length of interval -
these values should be given in seconds.

The ReadProcessedN function operates in the same way as the ReadProcessed function, but it allows
data concerning many variables and their aggregates to be retrieved at one call. For example, in
order to retrieve minimum, maximum and average values of a variable at one call, as the first
parameter you should pass the table containing threefold the same variable name, and as the second
parameter - the table containing identifiers of relevant aggregates.

In order to achieve the maximum efficiency of reading two or more aggregates of the same variable,
you should group the values of the itemIDs parameter according to variable names.

10.9 Active Alarms

[C#]
Alarm[] ReadActiveAlarms();
Alarm[] ReadActiveAlarmsEx(
 Severity severity,
 Status status,
 string textMask,
 int[] groups);

The ReadActiveAlarms and ReadActiveAlarmsEx functions are designed for retrieving information on
active alarms in an Asix system application. The operation of the ReadActiveAlarms function is the
same as of the parameterless ReadActive function of the ServerAL class.

The operation of the ReadActiveAlarmsEx function is the same as of the 4-parameter ReadActive
function of the ServerAL class.

10 Web Service Server

127

10.10 Historical Alarms

[C#]
Alarm[] ReadHistoricalAlarms(
 DateTime periodStart,
 int periodLenS,
 int maxNumberOfAlarms);
Alarm[] ReadHistoricalAlarmsEx(
 DateTime periodStart,
 int periodLenS,
 int maxNumberOfAlarms,
 Severity severity,
 Status status,
 string textMask,
 string idRange,
 int[] groups);

The ReadHistoricalAlarms and ReadHistoricalAlarmsEx functions are designed for retrieving
information on historical alarms in an Asix system application.

The operation of the ReadHistoricalAlarms function is the same as of the 3-parameter ReadHistorical
function of the ServerAL class. The operation of the ReadHistoricalAlarmsEx function is the same as
of the 8-parameter ReadHistorical function of the ServerAL class (see: 8.1.6 ReadHistorical
Functions). It only differs in the method of giving the length of period - this value should be given in
seconds.

128

11 Diagnostics of Server Operation

11.1 Logs

During operation, the servers write to their log files information on the beginning and the end of
their operation and on the serious errors encountered during operation. Filename of this log is:

<identifier>.<current date>.log

As an identifier the following values may passed.

Table. Values of 'identifier' Used for Log Names (Diagnostics of Server Operation).

Server Type Identifier
All Automation servers XConnect
DDE of current data ServerCTDDE
DDE of current data - service ServiceCTDDE
OPC of current data ServerCTOPC
All .NET servers, WebService server XConnectNet
OLEDB of archived data ServerHTOLEDB

As the <current data> date of log creation in YYYYMMDD format is used. If the log file becomes
bigger than 10 MB, it will be closed at midnight of the current day and a new log file with a new
name will be created. In case of lack of disk memory, the old log files are automatically removed.

EXAMPLE

Example name of the log created the 28 August 2001 by Automation server of current data:

ServerCTOPC.20010828.log

By default, log files are saved in the Log subdirectory of the same directory where the AsixConnect
package was installed; the most frequently in c:\asix\Log. The directory in which log files are saved
may be changed using Configurator program. See 3.4.3 Package Options.

11.2 Error Codes

Every function that is made available by OPC server of the AsixConnect package returns 0 if operation
was performed successfully. If operation was performed successfully, but there is additional

11 Diagnostics of Server Operation

129

information on function execution, a positive value is returned. In case of error a negative value is
returned.

Error codes returned by OPC server are given in the table below.

Table. Error Codes Returned by OPC Server.

Name of Error Code Error Code Description

ASKOM_E_NetInit 0xC0048100L Error in initiating network of the Asix
system

ASKOM_E_NetInitTimeout 0xC0048101L Timeout in waiting on initiating the
network of Asix.

ASKOM_E_NetInstallClient 0xC0048102L Error during initiating the client of
network of Asix

ASKOM_E_NetDeinstallClient 0xC0048103L Error during closing the client of network
of Asix

ASKOM_E_NetFindServer 0xC0048104L Function calling error Searching of data
server

ASKOM_E_NetFindServer_NotFound 0xC0048105L Data server in network of the Asix system
was not found

ASKOM_E_NetLinkToServer 0xC0048106L Error when connecting to data server of
Asix

ASKOM_E_NetLinkToServerTimeout 0xC0048107L Timeout during connecting to data server
of Asix

ASKOM_E_NetLinkToServerNegativeAnswer 0xC0048108L Error during connecting to data server of
Asix - negative response

ASKOM_E_NetCloseLink 0xC0048109L Error during closing connection with data
server of Asix

ASKOM_E_NetSendData 0xC004810aL Data transmission error in network of Asix

ASKOM_E_NetAnswerTimeout 0xC004810bL Timeout in waiting on response in
network of Asix

ASKOM_E_ItemUnknown 0xC0048120L Error - variable unknown in Asix

ASKOM_E_TheSameItemWrittenMoreThanOnce 0xC0048121L Errors in parameters during write
operation. A variable is written more then
once.

ASKOM_E_WriteError 0xC0048128L The Asix system returned error during
attempt of write operation

ASKOM_E_WriteError_NetworkServerNotFound 0xC0048129L The Asix system returned error during an
attempt of write operation- server
servicing the variable was not found

ASKOM_E_WriteError_IllegalCommand 0xC004812aL The Asix system returned error during
attempt of write operation -a device
regarded command as non acceptable

ASKOM_E_WriteError_DriverTimeout 0xC004812bL ASIX system returned error during
attempt of write operation - timeout
during writing to device

ASKOM_E_WriteError_DriverTransmisionError 0xC004812cL The Asix system returned error during
attempt of write operation - transmission
error during communication with device

ASKOM_E_WriteError_DeviceRequestIllegal 0xC004812dL The Asix system returned error during
attempt of write operation- request
regarded as non acceptable.

AsixConnect

130

ASKOM_E_GroupItemsCantBeUsed 0xC0048139L Function doesn't handle identifiers of
variable groups.

ASKOM_E_ErrorInitializingHaspKey 0xC0048047L Error during initiating the HASP key

ASKOM_E_HaspNotFound 0xC0048048L The HASP key was not found.

ASKOM_E_HaspConstructorExpired 0xC004804AL Time in designer mode expired

ASKOM_E_VarBaseNotFound 0xC004a001L No base of variables in given directory

ASKOM_E_ErrorDuringOpeningVarBase 0xC004a006L Error during opening base of variables

ASKOM_E_ErrorDuringOpeningVarBase
_SharedMemLocation

0xC004a008L Error during opening base of variables -
incorrect parameter SharedMemLocation
of BDE

ASKOM_S_DataTransmisionInterruptedByUser 0x00048140L Data transmission broken by the user

ASKOM_E_ErrorDuringReceivingArchiveVarInformation 0xC0048141L Error during retrieving information on
archive variable

ASKOM_E_ErrorDuringOpeningArchiveVar 0xC0048142L Error during opening archive variable

ASKOM_E_ErrorDuringClosingArchiveVar 0xC0048143L Error during closing archive variable

ASKOM_E_ErrorDuringSeekingArchiveVarData 0xC0048144L Error during data searching of archive
variable

ASKOM_E_ErrorDuringReadingArchiveVarData 0xC004815L Error during reading archive

ASKOM_E_ErrorDuringConfirmingReadingArchiveVarData 0xC0048146L Acceptance error during reading archive
variable

11.3 DDE Server

If the script developed in VisualBasic executes the read operation from DDE server that has been
suddenly closed, Excel function returns error 2023.

	1 Introduction
	1.1 Package Components
	1.2 Licensing
	1.3 Requirements of the Asix System
	1.4 Most Important Modifications in the Package

	2 Installation as a Part of the Asix Package
	3 Connection Configuration
	3.1 Channels
	3.2 How to Specify the Channel Name
	3.3 Configuration File
	3.4 Interactive Configuration
	3.4.1 Configurator Program
	3.4.2 Channel Management
	3.4.3 Package Options

	3.5 Program Configuration
	3.6 Channel Options
	3.6.1 Asix System Network
	3.6.1.1 Asix System Network Configuration
	3.6.1.2 Searching for Data Servers of the Asix System
	3.6.1.3 Searching for Data Servers of the Asix System in Other Subnetworks
	3.6.1.4 External List of Servers

	3.6.2 Variable Definition Database
	3.6.3 Current Data
	3.6.4 Archival Data
	3.6.5 Alarms
	3.6.6 Reports
	3.6.7 DDE and OPC Servers

	4 Variable Definition Database
	4.1 Variable Definition Database
	4.2 Automation Server
	4.2.1 Automation Server
	4.2.2 Application of Server
	4.2.3 LoadChannel Function
	4.2.4 Init Function
	4.2.5 ReadAttribute Function
	4.2.6 SelectAttribute Function
	4.2.7 SelectVar Function
	4.2.8 SelectVars Function

	4.3 Server .NET
	4.3.1 ServerVB Class
	4.3.1.1 Application of Server
	4.3.1.2 ServerVB Designer
	4.3.1.3 Dispose Function
	4.3.1.4 Init Function
	4.3.1.5 ReadAttributes Function
	4.3.1.6 ReadAttributesN Function
	4.3.1.7 Operation in ASP.NET Environment

	4.3.2 ServerVBUI Class
	4.3.2.1 Application of Server
	4.3.2.2 ServerVBUI Designer
	4.3.2.3 Dispose Function
	4.3.2.4 Init Function
	4.3.2.5 SelectVar Function
	4.3.2.6 SelectVars Function
	4.3.2.7 SelectAttribute Function

	5 Measurement Status Description
	5.1 Measurement Status Description
	5.2 Measurement Quality
	5.3 Quality Bit Field
	5.4 Substatus Bit Field for Bad Quality
	5.5 Substatus Bit Field for UNCERTAIN Quality
	5.6 Substatus Bit Field for GOOD Quality
	5.7 Limit Bit Field
	5.8 Vendor Bit Field
	5.9 Archive Data Bit Fields

	6 Current Data
	6.1 Identifiers
	6.2 Operation Without Variable Definition Database
	6.3 Defining Write Rights
	6.3.1 Simple Write Function
	6.3.2 Extended Write Function

	6.4 Automation Server
	6.4.1 Automation Server
	6.4.2 Application of Server
	6.4.3 LoadChannel Function
	6.4.4 Init Function
	6.4.5 Read Function
	6.4.6 SetItemActive Function
	6.4.7 Write Function
	6.4.8 WriteEx Function
	6.4.9 Active Property
	6.4.10 ServerState Property
	6.4.11 StartTime Property
	6.4.12 DataChange Event
	6.4.13 Error Handling

	6.5 DDE Server
	6.5.1 DDE Server
	6.5.2 Application of Server
	6.5.3 DDE Operations Supported by the Server
	6.5.4 Format of Transferred Data
	6.5.5 Transfer of Error Information
	6.5.6 Using the DDE Server in Excel
	6.5.7 'DDE Server' Service

	6.6 OPC Server
	6.6.1 Technical Specification
	6.6.2 Details of Implementation
	6.6.2.1 Introduction
	6.6.2.2 OPC Server Object
	6.6.2.3 Browsing of Variable Definition Database
	6.6.2.4 Browsing Variable Properties
	6.6.2.5 Variable Access Path
	6.6.2.6 Process Variables
	6.6.2.7 Synchronous Operations
	6.6.2.8 Asynchronous Operations
	6.6.2.9 Writing New Value, Quality and Time Stamp

	6.7 .NET Server
	6.7.1 Application of Server
	6.7.2 ServerCT Designer
	6.3.2 Dispose Function
	6.7.4 Init Function
	6.7.5 Read Function
	6.7.6 Write Function
	6.7.7 Write Function - Extended Write Operation
	6.7.8 ItemState Structure
	6.7.9 SetItemActive Function
	6.7.10 ItemsChange Event
	6.7.11 Active Property
	6.7.12 Operation in ASP.NET Environment

	7 Archive Data
	7.1 Identifiers
	7.2 Operation Without Variable Definition Database
	7.3 Aggregates
	7.3.1 Description of Aggregates
	7.3.2 Askom Algorithm
	7.3.3 OPC Algorithm
	7.3.4 Raport Algorithm

	7.4 OPC Time Format
	7.5 Automation Server
	7.5.2 Application of Server
	7.5.3 LoadChannel Function
	7.5.4 Init Function
	7.5.5 ReadRaw Function
	7.5.6 ReadProcessed Function

	7.6 OLE DB Server
	7.6.1 OLE DB Server
	7.6.2 Identification and Configuration
	7.6.3 Tables
	7.6.4 asix.SQL Queries
	7.5.6 Examples of Queries

	7.7 NET Server
	7.7.1 Application of Server
	7.7.2 ServerHT Designer
	7.7.3 Dispose Function
	7.7.4 Init Function
	7.7.5 ReadRaw Functions
	7.7.6 ReadProcessed Functions
	7.7.7 ReadProcessedAsString Function
	7.7.8 RelativeDateTime Function
	7.7.9 RelativeTimeSpan Function
	7.7.10 ReadRawResult Class
	7.7.11 ReadProcessedResult Class
	7.7.12 ReadProcessedAsStringResult Class
	7.7.13 ItemSample Structure
	7.7.14 ItemStringSample Structure
	7.7.15 ItemProcessedSample Structure
	7.7.16 DataSet Object
	7.7.17 Operation in ASP.NET Eenvironment

	8 Alarms
	8.1 .NET Server
	8.1.1 Application of Server
	8.1.2 ServerAL Designer
	8.1.3 Dispose Function
	8.1.4 Init Function
	8.1.5 ReadActive Functions
	8.1.6 ReadHistorical Functions
	8.1.7 Alarms2DataSet Function
	8.1.8 Alarm Structure
	8.1.9 Operation in ASP.NET Environment

	9 Reports
	9.1 .NET Server
	9.1.1 Application of Server
	9.1.2 Configuration of Report Definition Files
	9.1.3 ServerRP Designer
	9.1.4 Dipsose Function
	9.1.5 Init Function
	9.1.6 GetReportsInfo Function
	9.1.7 ReadReportsInfo Function
	9.1.8 GetDefFilesInfo Function
	9.1.9 ReadDefFilesInfo Function
	9.1.10 GetReportsDirectoryPath Function
	9.1.11 ReportInfoNet Structure
	9.1.12 DefFileInfoNet Structure
	9.1.13 Operation in ASP.NET Environment

	10 Web Service Server
	10.1 Web Service Server
	10.2 Installation
	10.3 Web.Config Configuration File
	10.4 Clients
	10.4.1 Internet Explorer
	10.4.2 WebForm Application

	10.5 Variable Definition Database
	10.6 Current Data
	10.7 Raw Archive Data
	10.8 Aggregated Raw Data
	10.9 Active Alarms
	10.10 Historical Alarms

	11 Diagnostics of Server Operation
	11.1 Logs
	11.2 Error Codes
	11.3 DDE Server

