

User’s Manual for Asix 7

www.asix.com.pl

Asix.Evo - Application
Parameterization

Doc. No ENP7E012
Version: 2012-08-17

http://www.asix.com.pl/�

Asix.Evo - Application Parameterization

ASKOM® and Asix® are registered trademarks of ASKOM Spółka z o.o., Gliwice. Other brand names,
trademarks, and registered trademarks are the property of their respective holders.

All rights reserved including the right of reproduction in whole or in part in any form. No part of this
publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without prior written permission
from the ASKOM.

ASKOM sp. z o. o. shall not be liable for any damages arising out of the use of information included in the
publication content.

Copyright © 2012, ASKOM Sp. z o. o., Gliwice

ASKOM Sp. z o. o., ul. Józefa Sowińskiego 13, 44-121 Gliwice,
tel. +48 32 3018100, fax +48 32 3018101,

http://www.askom.com.pl, e-mail: office@askom.com.pl

http://www.askom.com.pl/�

Welcome

1

Table of Contents
1 Configuration of the Application Workstations ... 3

1.1 'Stations' Operating Panel ... 3

1.1.1 Creating New Workstation .. 4

1.2 Setting the Parameters Depending on a Workstation .. 6

1.3 Configuration of Workstation Communication Parameters ... 7

1.3.1 Server Aliases ... 8

1.3.2 Foreign Workstations .. 8

1.4 Running the Application in the Context of the Selected Workstation 9

1.5 Connection Diagnostics .. 9

2 Current and Historical Data Access Configuration ... 10

2.1 Data Server Configuration .. 10

2.2 Process Variable Definition Database ... 12

2.2.1 Creating a New Database .. 12

2.2.2 Importing the Previously Created Database .. 13

2.2.3 Editing and Browsing the Variable Definition Database .. 14

2.2.4 Variable Attributes ... 16

2.2.5 Setting the Database Activity Status ... 17

2.3 Communication Channels ... 18

2.3.1 Communication Drivers .. 19

2.3.2 Types of Virtual Channels .. 21

2.4 Declaration of the Process Variable Value Archives ... 21

2.4.1 Archives Types .. 23

3 Scheduler Configuration ... 25

3.1 Other Methods of the Operator Action Automatic Execution ... 27

4 Parameterization of Multilingual Applications ... 28

4.1 Application Languages Declaration .. 28

4.2 Switching the Operating Language ... 29

4.3 Program Texts ... 30

4.4 Application Texts ... 30

4.4.1 General Purpose Texts ... 31

5 Security System .. 33

5.1 Defining Users ... 33

Asix.Evo - Application Parameterization

2

5.2 Defining Roles .. 34

5.2.1 The "Runtime Administration Right" Permission .. 35

5.2.2 The "Control Send Right" Permission .. 35

5.2.3 The "Alarms Acceptation Right" Permission .. 35

5.2.4 The "Desktop Is Enabled" Permission .. 35

5.3 The Security System Operating Mode ... 36

5.3.1 Standard Mode .. 36

5.3.2 Central Mode ... 36

5.4 Settings Specific for a Workstation ... 37

5.5 Using the Security System in the Application .. 38

5.5.1 User Login .. 38

5.5.2 Verification of Permissions .. 39

5.5.3 Changes in the Permission Parameters in the Application Run Mode 39

5.5.4 Viewing the Login Event Log .. 40

6 Recording Control Operation .. 41

7 Operation with AsTrend Program .. 43

7.1 Operation in the Browser Version of the Application .. 44

8 Operation with the AsBase Program .. 45

8.1 Connection Filter ... 47

8.1.1 Inserts .. 48

8.2 Users Permissions ... 49

8.3 AsBase in Browser-Based Applications ... 49

9 Synchronization of the Application Files .. 50

9.1 Synchronisation of the Application Definition Directory .. 50

9.2 Synchronization of Working Directory ... 52

10 Using Pattern Trends .. 53

10.1 Trends Edition .. 53

10.2 Displaying Pattern Trends ... 55

10.3 Trend Transfer ... 55

11 Keyboard .. 56

11.1 Keyboard Object .. 56

11.2 Box Keyboard ... 56

3

1 Configuration of the Application Workstations

When configuring the Evo type application within a single project, the parameters for all
workstations which will participate in the application need to be defined. Generally, each server
workstation or stand-alone workstation is explicitly declared, while terminal workstations are
parameterized altogether.

When creating the application using the wizard, a basic set of workstations can be created at once. A
workstation of name compatible with the computer name is created in each case. The primary
objective of this workstation is to edit the application (although it can also be used as a production
workstation).

1.1 'Stations' Operating Panel

Stations is the main panel used for managing the application workstations.

Fig. 'Stations' Operating Panel.

The illustration presents the configuration of workstations for a typical, small application. In the
Serwers area, the following are defined: single engineering workstation (for developing and testing
the applications) and a single production operator workstation. In addition, there is a single terminal
workstation defined as well. While the application is running within the context of this station, the
number of terminals which may be launched is arbitrary.

Asix.Evo - Application Parameterization

4

Stations panel provides two functions. Firstly, it allows to switch between workstations while the
station-dependent parameters are edited. Secondly, the panel is used to create and manage new
workstations. Workstation management commands are available through the panel context menu.
Additionally, the workstation may be moved between the areas using the 'drag and drop' method.

Locating a few workstations in a single area allows for hierarchical parameterization. The parameters
defined in the context of the area apply to all the workstations of the area, if not defined otherwise
in the workstation itself.

1.1.1 Creating New Workstation

To create a new workstation, the New Station ... command from the panel context menu must be
selected.

The workstation parameters are described in the table below:

Figure. Window to Create a New Workstation.

Table: Workstation Parameters.

Parameter Meaning

1 Configuration of the Application Workstations

5

Workstation name Workstation identifying name. In the case of server workstations it is
preferable to use the name that matches the computer system name on
which the workstation will be run.

Field The name of the area where the workstation is to be located. It will inherit
the area settings. It is also possible to create a workstation outside any
area.

Copy settings from The name of another workstation or area from where the settings are to
be copied. Used for creating twin workstations.

Station type A key parameter determining the intended use of the workstation.
Depending on the type chosen, the range of possible functions of the
workstation may differ. The following types are available:

• Server - the workstation may share its data with other
workstations and it can perform the function of a network
controller in the alarm system.

• Terminal - a window type terminal which performs
exclusively the function of data retrieving client in the
network system.

• WWW Terminal - web terminal which collects all data
from server workstations by means of a network
mechanism.

• Standalone - the workstation used in configurations
without network communication.

Outgoing protocol The protocol used for the communication of a data client type. The
following protocol types are available:

• DuplexTcp - the primary mode of communication in the
local networks. It can also be used in wide area networks if
the transmission is not blocked by a firewall.

• Tcp - a protocol similar to DuplexTCP but slightly less
efficient.

• Http - a protocol intended mainly for the WWW (web)
terminals. However, the WWW Terminal may also use the

DuplexTcp protocol if the communication is not blocked by
a firewall.

Server address The address of a server that uniquely identifies the workstation in the
network. It may be a system name or an IP address. The box may be left
blank if the name of the workstation is consistent with the computer
name.

Server protocols The protocols used by a server workstation for communication with
clients. A set of selected protocols must comply with the protocols used by
other workstations which will connect to the server.

Asix.Evo - Application Parameterization

6

1.2 Setting the Parameters Depending on a Workstation

The application configuration data set contains elements common to all workstations (windows,
charts, menus, images, etc.) as well as the parameters separately defined for each workstation. The
workstation parameters refer to the configuration of communication channels and data archives,
Action scheduler and the so-called Stations Settings. The operating panels for all of these setting
groups can be opened through Application Explorer panel nodes.

The characteristic feature of the operating panels of particular workstations is that the name of the
tab displays the name of the workstation (area) to which the displayed settings refer. Switching the
operating panel to another workstation is done by clicking on the appropriate workstation panel
node.

Fig. Editing Panel for Workstation Settings.

Editing panels for workstation parameters always show the current settings of the workstation. The
values of these parameters result from the default settings, settings introduced to the parent area or
custom settings. If a given workstation setting has been explicitly modified, it is specially indicated in
the operating panel. For example, as the above illustration presents, some values (modified) are
displayed in bold. Sometimes there are parameters that cannot be changed. It may occur when the

1 Configuration of the Application Workstations

7

parameter has been defined in the parent area. Such parameters can be changed only in the context
of the area in which they have been defined.

The workstation settings can be found in other operating panels, common to all workstations. In such
a case, the tables with the parameters for all workstations are displayed. It may be, for example, a
table specifying the roles which each of the workstation performs in the alarm management system.
Another example is a table of workstation communication settings.

1.3 Configuration of Workstation Communication Parameters

The operating panel of workstation communication parameters is opened by selecting the Global
Settings node in the Application Explorer panel and then selecting the Communication tab.

Fig. Workstations Communication Global Settings.

The panel shows the settings of all the application workstations and several global parameters. The
global parameters define the port numbers used for the communication between workstations as
well as the text identifier used to distinguish the workstations of the various applications running in
the shared network.

Asix.Evo - Application Parameterization

8

The workstations shown in the table correspond in a large part to the workstations form the Stations
operating panel. The parameters are derived from the settings specified during the creation of
workstations.

A special type workstation may be added to the list of workstations using the + button. These
workstations are not displayed in the Stations panel and the application cannot be run in the context

of these workstations.

1.3.1 Server Aliases

Server aliases are used when a standard server workstation can be identified in the network by
several addresses, e.g.: is equipped with two network cards. Depending on the location of terminal
workstations in the network, the server can be accessed via different addresses.

When an alias is added, the name of the server and its alternative address needs to be specified.

1.3.2 Foreign Workstations

Foreign workstations are used when there is a necessity to connect to the server from another
Asix.Evo application. Only communication between workstations which are defined within the same
application is possible as standard. Foreign workstation mechanism allows for the data exchange
between different Asix.Evo applications.

When defining a foreign workstation, the network ID of the application to which the foreign server
belongs as well as this server address have to be specified.

Fig. Adding Foreign Workstation.

1 Configuration of the Application Workstations

9

1.4 Running the Application in the Context of the Selected Workstation

When running the Asix.Evo program, the name of the workstation in the context of which the
program is to be run must be specified. By default, if the name is not specified, the program will
attempt to run with the computer name. If the workstation of the name compatible with the
computer name is not defined, the user will have to select the workstation from the list of all
workstations. However, the workstation name can be forced in the command line using the as
option.

AsixEvo -as=ST-OP2 "C:\AsixApp\Aplication1"

The example uses the ST-OP2 workstation. The short-cuts that launch the application may be
created by means of the short-cut creator run by a command from the Tools menu.

The workstation name, in the context of which the program runs, is displayed in the window title bar
of the program.

Fig. Displaying Workstation Name in the window title bar of the Asix.Evo program.

The run mode allows to display the workstation name on the diagram using the integrated virtual
variable called StationName.

1.5 Connection Diagnostics

While the program is running, the communication system state may be monitored by a special
diagnostic panel. It is possible to view the status of each active workstation of the application. The
basic system information on workstations and the list of active connections is displayed as well.

When the architect mode is active, the panel is opened in the explorer panel of the application, using
the Diagnostics / Connections node. In the run mode the communication diagnostic panel is available
through the control panel window.

10

2 Current and Historical Data Access Configuration

A key element of any application is to define a set of process variables and the way they can be
captured and archived. Parameterization of the access to the process data is performed
independently for each workstation of the application. The only exception is the variable definition
database which is identical for all workstations, although workstations may use different databases
of variable definitions.

2.1 Data Server Configuration

The key decision to be made is the way of collecting the data. To read the variable values from the
drivers and to archive them, the Evo type applications use Asmen and Aspad modules, which are also
used in the applications of previous type (classic type). These modules are run under the so-
called data server.

In the application explorer panel, select the Stations Settings node and then Data Sources tab.

Fig. Workstation Process Data Source Settings.

The name of the workstation which is being parameterized is displayed in the title tab. The
workstation may be switched in the Station panel.

It is possible to operate using one of the three strategies:

a. Do not use
In this mode, the data server is not used, and thus direct reading of data
from the controllers and their archiving is not possible. As a rule, the mode is

2 Current and Historical Data Access Configuration

11

used only on the window terminal workstations and WWW workstations -
the workstation loads all the data form another application workstation
which operates in the server mode.

b. Connect Directly with local Asix application
Occasionally used mode which allows accessing the data via the Asix
application in the previous type, running on the same computer. Typically
used to create the browser version of the application of previous type. Such
application is converted into the Evo version, and the Asix.Evo server
workstation is launched on the same computer as the original server and is
used as a data source for the browser workstations.

In this option, the Asix.Evo data server is initialised within the classic Asix
process. To do this, the use of the server in the Architect program should be
enabled: the Programs/Asix.Evo tab in the Start parameters panel.

Fig. Architect Program > Start Parameters > Programs > Asix.Evo Tab.

c. Connect via Data Server

This is the basic operation mode. Virtually in every application, at least one workstation operates in
this mode. The data server reads the data from the controllers which control the process and can
archive them. The data server can also be used for the two-way data exchange between the Asix.Evo
application and the application of previous type. The data server parameterization requires the
configuration file name and the operation mode. It is the same file which is used in the applications
of previous type. The Architect program is used to edit the file - program operation is described in
the accompanying documentation. The data server configuration file can be created with the wizard,

Asix.Evo - Application Parameterization

12

while developing the new Asix.Evo application. The file used in the applications of previous type may

be used as well. With the button, the Architect program may be run with the relevant
configuration file loaded. In a case of the Asix.Evo Application, the Architect functioning is limited to
the communication channels and archives configuration and to the variable definition database
creation.

2.2 Process Variable Definition Database

In the variable definition database, the information on all the process variables used in the
application is stored. This applies to both variables read from the controllers and virtual variables.
General rules for the variable definition database use have not changed compared to the previous
program versions.

In the Asix.Evo applications, the definition database in the MDB or XML format may be used. The
MDB type databases come from the previous program versions. The Architect program is used to edit
and generate this type of databases. A detailed description of the rules for the MDB use can be found
in the manuals describing the classic application constructions.

The XML databases are used only in the Asix.Evo applications. They are of secondary importance.
They are essentially used to define the virtual variables.

2.2.1 Creating a New Database

In the Application Explorer panel in the context menu of the Variable Definitions node, execute the
Create Variables Definition Base command.

Fig. The Window for Creating a New Variable Definition Database.

2 Current and Historical Data Access Configuration

13

Enter the database name and use the Create button. The new XML type database with a standard set
of attributes will be created.

The MDB type databases are created using the Architect program. If the application has been
created using the wizard, the MDB database has been created and added during the wizard
operation.

2.2.2 Importing the Previously Created Database

In the Application Explorer panel in the context menu of the Variable Definitions node, execute the
Import Variable Definition Database command.

Fig. The Window for Importing the Variable Definition Database.

Enter the existing database name and use the OK button.

The databases in the MDB and XML formats can be imported. When the variable definition database
file is imported, it is copied to the VariableSources subdirectory of the application definition
directory.

Asix.Evo - Application Parameterization

14

In the import window, various options controlling the import process are available. They apply mainly
to the automatic detection and configuration methods of the channels and archives used in the
variable definitions. The default settings are usually optimal. With these, the manual definition
process for the channels and archives can be avoided. The channel and archive types are described in
the subsequent sections.

2.2.3 Editing and Browsing the Variable Definition Database

In the Application Explorer panel, double-click on the selected database in the Variable Definitions
node. The below operating panel of the variable definition database will open. In the case of the
MDB type databases, only browsing the database contents is possible. For the XML databases, the
variable editing functions are available.

Fig. The Variable Set Panel for the Variable Definition Database.

In the Variables tab, editing of the variable attributes is performed. Adding or removing a variable is
performed with the integrated toolbar buttons or with the context menu commands.

2 Current and Historical Data Access Configuration

15

The XML databases are created with a standard set of variable attributes. This set can be changed in
the Attributes tab.

Fig. The Panel of Variable Attributes.

The panel displays the descriptions of all the attributes currently used in the variable definition
database. Each attribute is defined by:

a. Attribute Name - attribute name independent of the language used during
the parameterization of diagrams in the Attribute function and in the @
abbreviated notation.

b. Localized Name - multilingual descriptive name used in the variable selection
window and in the variable definition panel.

c. Grouping Attribute - the option marking the attribute as a grouping attribute,
i.e. used to crate a hierarchy tree in the variable selection window.

d. Value Type - specifying the attribute type, allows selecting the appropriate
field editor.

Asix.Evo - Application Parameterization

16

The custom attribute of any significance can be added to the existing database using the toolbar
 button. Typically, it is used to add grouping attributes. Predefined attributes can also be added using

the button.

The Languages tab allows declaring in which languages the attribute and variable descriptive
properties are given.

The MDB database editing and generating is performed with the Architect program. If the MDB
database is modified while developing the Asix.Evo application, it can be reloaded with the Reload
Active Databases command from the context menu in the Application Explorer panel.

2.2.4 Variable Attributes

Most of the attributes used in the variable definition databases of the Asix.Evo application are
identical as in the case of classic applications. The list below describes only the differences in the
attributes interpretation. A complete list of the variable attributes can be found in the
Architect.pdf/chm documentation, in Appendix 1.

Name Description

Value Type Specifies the variable value type in the Net. Convention. If the MDB
database without this attribute is used, it is virtually created based
on the converting function used in the variable definition and
based on the format.

Format The value text formatting method in the .Net Convention. A brief
description of the .Net format can be found in the
AsixEvo_Techniques_of_Diagram_Creation.pdf/chm manual.
In the case of MDB databases, the attribute is virtually created
according to the following principles:

a. If the database has the FormatEvo attribute, it is
directly treated as the Asix.Evo Format attribute
definition.

b. If the database does not have the FormatEvo
attribute, the Format attribute of the MDB
database (specified in the convention of classic
application formats) is translated into the
corresponding .Net format when loaded.

Readout conversion function The attribute has the form of an expression that pre-calculates the
variable raw value loaded from a driver. The reference to the raw

2 Current and Historical Data Access Configuration

17

value is performed in the expression contents using the RawValue
 function.
If the data server (Asix6 channel) is used, regardless of the
attribute definition of the function converting a readout, the
variable value is subject to the Asmen standard conversion, based
on the ConversionFunction attribute.
If the MDB database without the ReadConvertingFunction attribute
is used, it is virtually created based on the format used in the
variable definition.

Record conversion function

The attribute has the form of an expression that calculates the
control value before sending it to the driver.
The rest of the rules are the same as for the
ReadConvertingFunction attribute.

2.2.5 Setting the Database Activity Status

Not all the variable definition databases defined in the application must be used on every
workstation. In the Application Explorer panel, double-click on the Stations Settings node, and then
select the Variable Sources tab. In the Stations panel select an area or workstation.

Fig. Setting the Database Activity Status in the Workstation Settings.

Asix.Evo - Application Parameterization

18

In the open operating panel, the variable definition databases which are to be used on a selected
workstation (loaded at the start-up) may be selected.

2.3 Communication Channels

Each communication channel used in the process variable definitions should be parameterized in
terms of communication drivers used by the channel. Operating panel used for parameterization of
the channel is opened by double-clicking on the Channels node of the Application Explorer panel.

Fig. Panel for Parameterization of Communication Channels.

2 Current and Historical Data Access Configuration

19

The channel panel shows the parameterization in the context of a particular workstation or area
whose name is shown in the panel title tab. The workstation can be switched via the Stations panel.

The channel panel consists of two parts. In the left one, the list of all the application channels is
shown. This list can be created while the application is being created using the wizard or when
importing the variable definition database, based on the database contents scanning. It is also
possible to, at any time, execute the Import channels and archives function from the context menu of
the variable definition database node in the Application Explorer panel in order to update the
channel list. Regardless of the automatic methods, the channels may be manually added, deleted,
and copied using the toolbar buttons and context menu commands.

In the right side of the panel, the list of drivers along with parameters associated with the selected
channel is located. One driver of each type can be added to each channel. During the application
runtime, the first driver from the list which has an activity option set and was correctly activated will
be used. If the active driver is not of the highest priority and during its operation the system detects
that one of the drivers of the higher priority may operate, switching to that driver will occur. Adding
and removing the drivers as well as reordering them can be performed with the toolbar buttons or
the context menu commands.

2.3.1 Communication Drivers

Each of the drivers features standard parameters and an optional set of parameters specific to it.

Fig. Standard Parameter Window of the Communication Driver.

The standard parameters are described in the table below.

Table: Description of the Communication Driver Standard Parameters.

Name Description

Driver Type Specifies the type of used communication driver.

Control Allowed Specifies whether it is possible to perform control functions using
defined driver on the selected workstation (within the selected
area).

Active Specifies whether the parameter which allows disabling the driver
without removing its definition should be used.

Asix.Evo - Application Parameterization

20

2.3.1.1 NONE driver

The NONE driver is a virtual driver that does not perform any communication operations. It is used
only to store the variables whose values are set using the scripts or the operator actions. If no active
driver is defined in the channel, the NONE implicit driver will be used.

The driver does not have any non-standard parameters.

2.3.1.2 Network Driver

The Network driver is used for the network data exchange between the Asix.Evo application
workstations. It is used on terminal type workstations to read the data from server type
workstations. (The servers can also retrieve the data from other servers).

Table: Network Driver Non-Standard Parameters.

Name Description

Stations The list of server type workstations of the Asix.Evo application to
which the driver can connect to obtain the data.

2.3.1.3 Asix6 Driver

The Asix6 driver should be selected for all the channels whose variables are handled via a data
server, i.e. in practice, all the physical channels. The actual channel type is specified in the data server
configuration file. This file is parameterized in the Architect program. Rules of its parameterization
are the same as for the classic application and are described in the Architect program manual.

See also: 2.1. Data server configuration

The driver does not have any non-standard parameters.

2 Current and Historical Data Access Configuration

21

2.3.2 Types of Virtual Channels

The declaration method for virtual channels of None type requires some further explanation. This
can be done by three methods. The table below describes features specific to each declaration
method.

Table: The None Type Virtual Channel Declaration Methods.

Declaration Method Description

Variable without specifying the
communication channel name

Variables without the channel name are automatically assigned to
a default virtual channel. A variable type can be any .Net type.
These variables, however, can not be stored in the Aspad long-
term archive. The variable visibility range is limited to a local
workstation - they can not be shared via network mechanisms.

Variables in the channels with
the None type driver or without
explicitly defined driver.

A variable type can be any .Net type. These variables can not be
stored in the Aspad long-term archive. It is possible to share the
variable values with the other workstations with the Asix.Evo
application running.

The variables in the channels
with the Asix6 driver and Asmen
None type channel

A variable type can be any of Asmen type. The variable values can
be stored in the Aspad long-term archive. It is possible to share the
variable values with the other workstations with the classic type or
Asix.Evo application running.

2.4 Declaration of the Process Variable Value Archives

Each archive used in the definitions of process variables should be parameterized in terms of the
archive type. The operating panel used for the archive parameterization is opened by double-clicking
on the Archives node of the Application Explorer panel.

Asix.Evo - Application Parameterization

22

Fig. Panel for Declaration of the Process Variable Value Archives.

The archive panel shows the parameterization in the context of a particular workstation or area
whose name is shown in the panel title tab. The workstation can be switched via the Stations panel.

The archive panel consists of two parts. In the left one, the list of all the archives used in the
application is shown. This list can be created while the application is being created using the wizard
or when importing the variable definition database, based on the database contents scanning. It is
also possible to, at any time, execute the Import channels and archives functions from the context
menu of the variable definition database node in the Application Explorer panel in order to update
the archive list. Regardless of the automatic methods, the archives may be manually added, deleted,
and copied using the toolbar buttons and context menu commands.

The right part of the panel is used to select the archive type and to define its operating parameters.
Please note that in addition to the archive parameters, each variable has individual archiving
parameters specified in the ArchivingParameters attribute.

2 Current and Historical Data Access Configuration

23

2.4.1 Archives Types

2.4.1.1 Memory Archive

An auxiliary archive in which the variable values are stored only in the operating memory, without
saving it into the disk file. The archive stores data only from the moment the application is started.

The archive does not feature any configuration parameters.

The archive horizon defined as a number of minutes should be defined in the ArchivingParameters
attribute of the variable.

2.4.1.2 Network Archive

Network Archive is used to read the archive data from the other workstations of the Asix.Evo
application. It is used on terminal type workstations to read the data from server type workstations.

The server workstations from which the archive data are to be retrieved should be specified in the
archive parameters.

The variable ArchivingParameters attribute contents is of no significance for the network archive.

2.4.1.3 Asix6 Archive

The Asix6 archive is designated for long-term variable value archiving in a file or database archives.
The Asix6 archives are handled through the data server. Detailed parameters of the archive
operation mode are defined in the data server configuration file. This file is parameterised in the
Architect program. Rules of its parameterization are the same as for the classic application and are
described in the Architect program manual.

See also: 2.1. Data Server Configuration

The archive does not feature any configuration parameters.

The variable ArchivingParameters attribute is interpreted identically as for the classic applications - it
should be defined using the Architect program.

Asix.Evo - Application Parameterization

24

2.4.1.4 Random Data Archive

An auxiliary archive which creates a simulated variable value trends. Designated to demonstrate or
test the application operation, without creating the actual value archive.

The archive does not feature any configuration parameters.

Three integers separated by spaces constitute the ArchivingParameters variable attribute contents.
The first one specifies the time intervals between return samples [s], the second one specifies the
low limit of the value, and the third one the high limit of the value.

25

3 Scheduler Configuration

The Scheduler mechanism allows for automatic execution of the operator actions. The actions can
be executed in a specified time cycle, in response to the occurrence of freely defined conditions or
when certain system events take place.

The scheduler tasks are defined in the operating panel that is opened via the Scheduler node in the
Application Explorer panel.

Fig. Scheduler Panel.

The scheduler tasks belong to the settings linked to a workstation. Each workstation can have its own
set of tasks. If no task is defined on a workstation, it inherits the tasks from the parent area.

A new task is added to the scheduler with the toolbar '+' button or with the context menu command.

The three following properties are responsible for selection of the execution time for the operator
action defined in the task: Execute Mode, Time and Condition. The values of the Execute Mode
property specified in the table below are available.

Asix.Evo - Application Parameterization

26

Table: The Values of the Operator Action Execution Mode Defined in the Task.

Value Meaning

Always There are no restrictions, the execution time is determined by
the Time and Condition property settings.

Run mode only The action is only executed when the application is in the full
run mode, and the execution time is determined by the Time
and Condition properties.

Always except architect mode The action is only executed when the application is in the full
run mode or simplified edit mode, and the execution time is
determined by the Time and Condition properties.

Once at application start The action is executed once, at the time of the application
loading, regardless of the start-up mode. This mode is often
used to start the so-called resident scripts of the application.

At application start in run mode The action is executed once, at the start of the application in
the run mode (with the run parameter). This mode is often
used to start the so-called resident scripts of the application.

At current user change The action is executed whenever the logged user is changed.

The Time property is used to determine the operator action execution cycle.

Fig. The Operator Action Execution Cycle Declaration.

In addition to the basic execution cycle, expressed in any time unit, a start point offset is also
declared. In the example presented, the action will be executed every hour, at 5 minutes past each
full hour (0:05, 1:05, etc.). The property value will be saved as: Every 1 Hour Offset: M(5).

3 Scheduler Configuration

27

Examples of use:

Every 15 Minute - every 15 minutes (every 0, 15, 30 and 45 minute of an hour)

Every 1 Hour - every hour, exactly at full hour

Every 8 Hour Offset: H(6) - every 8 hours, at 6:00, 14:00 and 22:00

Every 1 Week Offset: H(8)D(Monday) - every week, on Monday at 8:00

In the time definition window, the Execute outstanding command may be selected as well. In
consequence, at the time of the application start it is verified if the previously planned execution was
performed. If not, the single outstanding execution is performed, out of normal sequence.

The Condition property allows defining a task the execution of which depends on meeting the
specific condition. The property is in the standard Asix.Evo expression form and should return the
boolean true / false value (or eventually not equal to zero/equal to zero). The interdependence of the
Time and Condition properties is explained in the table below.

Table: Interdependence of the Time and Condition Properties.

Definition method Meaning

Only the Time property is defined An action executed in accordance with the
specified time cycle

Only the Condition property is defined An action performed when the condition value is
changed from the false (equal to zero) to true
 (non-zero) value

Defining the Time and Condition properties The action is executed in accordance with the
specified time cycle, provided that at the time of
the planned execution the condition expression is
of true (non-zero) value

3.1 Other Methods of the Operator Action Automatic Execution

In addition to the scheduler mechanism, the operator action automatic execution is also possible
through:

• executing the operator action with the ExecuteAction method in the application script code.

• the operator actions of the Diagram Opened and Closed Diagram events, declared in the
diagrams properties - the actions executed at the diagram opening / closing.

28

4 Parameterization of Multilingual Applications

Asix.Evo allows for a simple creation of multilingual applications, i.e. applications which during their
runtime, at the request of a user, switch the language of all the displayed text information. Since the
texts are saved in the Unicode standard, it is possible to use all the languages supporting that
standard.

4.1 Application Languages Declaration

The first operation to be executed while creating the multilingual application is to determine the
languages that will be used. This can be performed when the application is being created, using the
wizard. Alternatively, it is possible to use the Language settings operating panel which is opened via
the Global Settings node of the Application Explorer panel.

Fig. The Application Languages Declaration Panel.

In the language setting panel, the check box in the Use in application column should be checked - for
each language which will be used in the application. In addition, the program language should be
specified for the languages used. The program language specifies the fixed texts embedded in the
program code, e.g. descriptions of fields in dialogue boxes, text of messages and commands in the
menu. Generally, the two predefined program languages may be used: Polish and English. The
designer, however, can define the program texts in other languages as well.

The Use formatting column determines whether data formatting according to the local settings
should be used when switching the application to the specific language. This applies mainly to

4 Parameterization of Multilingual Applications

29

displaying of dates. In the Default language column it should be determined which language of the
application will be used when it is started.

4.2 Switching the Operating Language

 When editing the application, the current language may be switched using the Select Language
... command from the Tools menu.

Fig. Program and Application Language Switching Window.

Using the displayed window, both the application and program language can be freely set.

In the application run mode, the language can be changed using the control panel window. A custom
language switching system integrated with the application diagram can be developed. To do this, the
SwitchLanguage operator action should be used. The action requires specifying a parameter in the
form of a two-letter language code. The language codes are displayed in the language settings panel
in the Language column.

Asix.Evo - Application Parameterization

30

4.3 Program Texts

As mentioned previously, Asix.Evo supports two working environment languages: Polish and English.
However, other languages can be used, but it requires an explicit determination of the program texts
in these languages. To this end, the Program texts work panel opened through the Multilanguage
Applications / Application Texts node of the Application Explorer panel should be used.

Fig. Operating Panel for Declaration of Program Texts.

The panel displays all the texts of the program. In the Text Id column, the fixed text ID is specified,
and in the Definitions column, a specific text contents in the language selected in the Preview
language box is given. After entering the text edit mode, a window for defining text in all the
program languages used is displayed.

Providing translations for all the program texts is not required. If the text is not translated, and it
needs to be used, the default form will be used: Polish or English (depending on the system settings
or selected settings in the SelectLanguage program of the Asix package).

4.4 Application Texts

The application texts are the texts of any types, used in the components of the application being
developed. These types include: text displayed on diagrams, alarm definitions, process variable
attributes, application menu commands. Each of these components is defined in a manner specific to
it, but in general, texts are entered in the multilingual text window which was already shown in the

4 Parameterization of Multilingual Applications

31

example of the program text definition. In the case of variable and alarm definition database creation
based on the Excel spreadsheets, texts are inserted in appropriately named separate columns of the
sheets. The details for sheet handling are enclosed in the alarm system manual and in the Architect
program user's manual.

In any case, in the application runtime, the selection of a text version compatible with the current

application working environment language is entirely automatic.

4.4.1 General Purpose Texts

When displaying multilanguage texts on a diagram or creating a multilanguage application menu is
necessary, the application text mechanism should be used. Its operation is similar to the program
text mechanism described earlier.

The Application Texts operating panel is opened through the Multilanguage Applications /
Application Texts node of the Application Explorer panel.

Fig. The Operating Panel for Declaration of the Application Texts.

For application text in the Text Id column, any unique, language-independent text ID should be
specified. All the text language versions should be entered in the Definitions column using the
standard multilingual text window.

In order to use the application text in its location of use (e.g. in the Text property of the menu item
or in the Off text property of the Button object) the reference to the text should be made using the

Asix.Evo - Application Parameterization

32

expression with the Text function, e.g. = Text (AllOff). The parameter of the Text function is the ID of
the application text created.

In the script it is possible to reference to the application text, using the ApplicationText method of
the IApplication interface.

33

5 Security System

The Asix.Evo authorization system is based on the user role system. Each application user is assigned
to one or several roles. The specific user privileges results from the fact of the assignment to a
particular role. In other words, the user can execute a protected operation, if at least in one of its
role, this operation is permitted. The action scheme is possible in which the mere fact of being
assigned to the role, allows for execution of certain operations.

The operating panel for permissions parameterization is opened through the Security node of the
Application Explorer panel.

5.1 Defining Users

The list of currently defined users is displayed on the Users tab of the security panel.

Fig. The Defining Panel of Application Users.

Asix.Evo - Application Parameterization

34

When the application is created, a user of the Administrator identifier which is assigned to the
Administrator role is created as well. The user has full privileges and cannot be deleted. With the
toolbar '+' button, additional users can be added.

The user is provided with a text identifier which is used in the login process, and with the name
performing just an informative function. The login and password should be also defined as well as it
should be selected whether the user will have the rights to change the password independently. The
Administrator user, initially has a blank password. In the Active column it is possible to disable the
user login privilege without deleting it completely. The check box in the Hidden column should be
checked if the user ID is not to be shown on the suggestions list in the login window - it increases the
level of security. In addition to these parameters, the roles to which the user is assigned in the
application should be specified.

5.2 Defining Roles

The role management is performed in the Roles tab.

Fig. The Application Users' Role Management Panel.

5 Security System

35

By default, the Administrator role with all the detailed permissions is created. This role can not be
changed. With the toolbar '+' button, additional roles can be added.

Each role has the text ID which is used e.g. in the HasRole function and in the CofirmRole action, and
the name performing just an informative function. In the Active column, it is possible to disable the
role without deleting it completely. At the bottom of the panel, the list of all the detailed permissions

is located - the permissions to be assigned to the role should be checked.

5.2.1 The "Runtime Administration Right" Permission

The permission specifies whether the communication diagnostic and script windows, as well as the
variable preview window in the application run mode (accessed via the control panel window) can be
opened.

5.2.2 The "Control Send Right" Permission

The permission specifies whether the user can execute control commands (values recording into the
process variables). In a case of control commands executed through the communication channel of
the Network type, an additional control lock, set up at the driver level is possible - it allows locking
the control operations on the selected work stations. The control operations lock in the network

channel has priority over the users' permissions.

5.2.3 The "Alarms Acceptation Right" Permission

The permission specifies whether the alarms can be acknowledged. Irrespective of this permission, in
the alarm system configuration, the right to execute acknowledgement on the selected workstations
can be blocked - this lock is of the highest priority.

5.2.4 The "Desktop Is Enabled" Permission

The permission specifies whether the user assigned to the role has full access to all the system
functions. Lack of the permission blocks functions such as the Windows taskbar, Windows buttons,

Asix.Evo - Application Parameterization

36

Ctrl-Esc, Ctr-Alt-Del etc. However, the locks are used only when the application was run with the
dynamic security measures option specified in the program start-up command line.

The protections controlled dynamically by the permission are supplement by the additional
protections configured with the StaticPolicies program included in the package.

5.3 The Security System Operating Mode

The operating mode of the security system, can be selected in the Settings tab of the Security
operating panel.

5.3.1 Standard Mode

The standard mode is a simple system in which the complete parameterization of the system is
stored in the security.xml file, located in the application definition directory. Therefore, the changes
made on a single workstation require copying the file to the other application workstations. The
application definition synchronization mechanism can be also used.

The standard mode should be used in single-station applications or when the permission parameters
are set at the time of the application development and the subsequent changes occur occasionally.

Although the permissions parameters are stored in the XML file, its contents cannot be changed
outside the control of the Asix.Evo program. The checksum is stored in the file - any unauthorized
change to the contents will be detected.

5.3.2 Central Mode

In the central mode, all the information concerning the permissions are stored in the Microsoft SQL
Server database. All the changes to the permissions and users are immediately shown on all
workstations. Additionally, the central register of all the events related with the authorization system
operation is created.

The central mode operation is similar to the AsAudit module operation, in previous versions of the
Asix applications.

5 Security System

37

Fig. The Parameterization Panel for the Security System Central Mode.

When configuring the central mode, the SQL Server name, authorization database name and
authorization mode used should be specified. Since creating the new database requires
administrative privileges to the SQL server, the login method to the SQL server with the
administrative privileges should be specified in the Database server authorization frame.

5.4 Settings Specific for a Workstation

Most of the security system parameters are defined globally for the entire application. However,
there are several specific settings for individual workstations. To alter them, an appropriate
workstation or area should be selected in the Stations panel, the Stations Settings operating panel
should be opened via Application Explorer panel and then the Security tab selected.

Asix.Evo - Application Parameterization

38

Fig. The Panel for Defining Individual Security Settings for an Individual Workstation.

The Asix.Evo application may operate with no user logged in - all the unprotected functions are
available, whereas the functions controlled by the security system are locked. If we want the
permission level of general availability to be higher, the so-called default user should be defined. The
role with a basic permission set should be defined and then the user who performs this role. This
user is specified as a default user. In consequence, after starting the application the user will be
automatically logged in - unless it had no password defined. In addition, if the other user is logged
out, a return to the default user will occur.

It is also possible to specify the login expiration time - after the specified time since the moment a
user have logged in elapses, it will be automatically logged out. The period of 00:00 means logging
without time limit.

The login start time which allows defining logging scheme forced at a specific points in time may be
specified. For example, the logging time is at 08:00 a.m. and the start time is at 6:00 a.m., it means
that the user will be logged out at 6:00 a.m., 2:00 p.m. and 10:00 p.m..

5.5 Using the Security System in the Application

5.5.1 User Login

Generally, users can login to the system via the control panel window. However, the application
designer can directly add login mechanism to the synoptic diagrams. The first of these mechanisms is
the Authorization box class object, which ensures a full support for the login, directly on the diagram.
The alternative is to use the Login operator action, which displays the user login window. It is
supplemented with the Logout action used to log off the user and the ChangePassword action which
opens the window used for password change.

5 Security System

39

The information about the current authorization system status can be displayed on the diagram. The
following predefined process variables provide this functionality:

• CurrentUser - ID of the currently logged user.

• UserRoles - identifiers of all the roles performed by the currently logged user.

• UserRemainingTime - time remaining until an automatic logout of the user.

5.5.2 Verification of Permissions

In the scope of standard permission control, the program operation is fully automatic. However, it is
possible to extend the application with custom functions. This is provided with the ConfirmRole
operator action and the HasRole function.

The ConfirmRole action allows for additional authorization of the user outside the standard logging
system. It can be used in the action scheme, in which an execution of any operation requires
authorization, or when an additional confirmation required from the user who is not logged
currently, is necessary.

The HasRole function allows linking the object appearance or functioning on a diagram, depending
on whether the user is assigned to the role specified in the call.

Examples of use are included in the "Techniques of Diagram Creation"
(Asix.Evo_Techniques_of_Diagram_Creation.PDF/CHM) user manual, under the Controlling
Permissions section.

5.5.3 Changes in the Permission Parameters in the Application Run Mode

Typically, the authorization system is configured when the application is developed, during its
operation in the edit mode. However, the full permission management (defining users and roles,
changing permissions and passwords) in the run mode is possible as well. This is enabled by the
SecurityManager action which opens the window below.

Asix.Evo - Application Parameterization

40

Fig. The Permission Parameterization Window in the Application Run Mode

Please note that the changes made on one workstation are immediately visible on the other
workstations, only if the authorization system operates in the central mode. In the standard mode,
the changes are visible only when the authorization file will be copied and synchronized.

5.5.4 Viewing the Login Event Log

In the standard mode, the user login events are recorded only in the normal message Log. They only
relate to the current workstation. In the central mode, a separate event log relating to the
authorization system is created. Events from all the workstations are recorded in it.

The overview window with the authorization system event log can be opened with the
SecurityBrowser($ MessagesLog) operator action.

41

6 Recording Control Operation

It is possible to record the control operations (the process variable recording) within the Asix.Evo
application. In order to initiate the recording, the two preconditions have to be met:

• The application security system must operate in the central mode - the control operations
are stored in the database used also in the security system.

• The Asix system license with the AsAudit extension is required.

The variables for which all the executed control operations are to be recorded can be selected in the
variable definition database. The database must feature the ControlLogging attribute. All the
variables, for which the value of this attribute is not equal to zero, are registered. The other settings
are not required.

For each registered control operation, the following information are recorded: who, when and on
which workstation has executed the operation. The variable value before the control operation, and
the new variable value are also recorded.

The overview window with the control operation log can be opened with the SecurityBrowser($
CpmtrolLog) operator action.

In a case of bit-based control operations, it is possible to display the text description of the executed
control operation. The current and new variable values are compared, and for the bits which have
been changed the text description of the operation is created. The text descriptions are created
based on the variable definition database contents. The StateNames, StateSet and StateValue
attributes are used for this purpose. The control operation description calculation algorithm for the
single bit is as follows:

• The StateNames attribute value for the controlled variable, is loaded.

• In the variable definition database, all the variables whose StateSet attribute is
identical with the StateNames attribute value loaded in the first point are searched.
Typically, these are inactive variables used only to define the state names.

• Among the variables selected in the previous point, the variable whose StateValue
 attribute value is identical with the bit number is searched.

• The StateNames attribute of the variable selected in the previous point should
constitute a sequence in the form of: 0=state0;1=state1. Depending on a new value
of the controlled variable bit, an appropriate description is selected.

Example

Name Variable Inactive State Names State Set State Value

ENGINE_1 0 ENGINE_CONTROL

Asix.Evo - Application Parameterization

42

EC_BIT0 1 0=OFF;1=ON ENGINE_CONTROL 0

EC_BIT1 1 0=FWD;1=BWD ENGINE_CONTROL 1

EC_BIT1 1 0=SLOW;1=FAST ENGINE_CONTROL 2

If the Engine1 variable is changed from the 2 to 3 value (the change of the bit of number 0 to the
value of 1), then in the control operation description, the text ON will be used.

43

7 Operation with AsTrend Program

The Asix.Evo applications can use the AsTrend program to display the trend of the process variable
archive data providing their advanced analysis. Interoperability of the Asix.Evo application and the
AsTrend program is based on the use of AstrendDisplay and AstrendPrint operator actions. However,
the preconfiguration of the AsTrend program use is required. The preconfiguration is performed
independently for each workstation of the application. Through the Stations node of the Application
Explorer panel, the workstation setting operating panel should be opened and then the Data Sources
tab should be selected. For the AsTrend program configuration, the shown below panel fragment is
responsible.

Fig. The AsTrend Program Configuration Parameters.

If the Astrend... family actions will be used, the Start AsTrend option should be selected. In a case of
window application it also launches the AsTrend program at the start of the application - this will
allow further for faster execution of the operator actions.

Generally, the list of all the MDB databases of the variable definitions, defined in the application, is
transferred to the AsTrend program. If this is an unwanted operation, a different name for the
variable definition database in the Alternative variable definition database field can be specified.

The user of the application will not be able to change the trend configuration files (trnx files), if the
Do not allow saving any files option is selected. The user will automatically acquire all the
permissions to the AsTrend program functions, if the Always work as AsTrend Administrator option is
selected. Both options are of significance only if the application runs in the window mode.

Asix.Evo - Application Parameterization

44

7.1 Operation in the Browser Version of the Application

In a case of Asix.Evo application operation in the browser mode, the interoperability with AsTrend is
also based on the browser version of this program. This means that the Asix package should be
installed along with Internet components. This will create the AsTrend program directory on the IIS
server. The installation must be performed on the same computer on which the Asix.Evo application
is published.

The AsTrend program usually loads historical data directly from the process data server which is
initialised within the Asix.Evo application. It is also possible to use the data available in the Asix
classic application servers. If the Data servers addresses for Web Browser parameter is not explicitly
defined, AsTrend will load the data from the computer on which the Asix.Evo application was
published. However, other sources of historical data can be specified - in the Data servers addresses
for Web Browser parameter, the system names or IP addresses (separated by commas) of all the
computers that provide historical data should be entered.

45

8 Operation with the AsBase Program

In a case of the Asix.Evo application, the interoperability with the AsBase program is similar to the
traditional applications. The first step in developing the application is a standard parameterization of
the AsBase application - the registration sets and / or groups of recipes and sets of variables used for
the data exchange between AsBase, the PLCs controllers and the Asix.Evo application should be
defined.

If the Asix.Evo application is to interoperate with the AsBase program, an appropriate interface
should be enabled. The preconfiguration is performed independently for each workstation of the
application. Through the Stations Settings node of the Application Explorer panel, the operating
panel of workstation settings should be opened and then the Data Sources tab should be selected.
For the AsBase program configuration, the panel fragment shown below is responsible.

Fig. Setting Up a Connection with the AsBase Program.

The Connect with AsBase option enables the interoperability with the AsBase program. In addition, it
launches the AsBase program at the start of the application. In the AsBase configuration file filed the
xml start up file name of the AsBase application should be specified.

Further interoperability of Asix.Evo and AsBase is performed via the variables used in the sets of
variables of AsBase and the Asbase... family actions. The process variables used for data exchange
should be defined in the channel of None type of the Asmen module. This results from the fact that
AsBase directly communicates with the process data server, initialized within the Asix.Evo
application. To conclude, the variable data exchange channel is defined as None type in the data
server configuration file (using the Architect program), and as Asix6 type in the Asix.Evo application.

The operator actions used to interoperate with the AsBase program are divided into two groups:
connection actions and connectionless actions. The connectionless actions perform auxilliary
function. These are the AsbaseLoad, AsbaseShow and AsbasePrint actions. They can be executed at
any time.

The connection mode actions allow browsing data from the AsBase database using the synoptic
diagram objects. The action scheme is as follows:

Asix.Evo - Application Parameterization

46

• Opening a Connection

The connection opening is executed via the AsbaseOpen action. In this action, the data
subset which will be displayed within the connection and the variable set which will be used
to transfer the data to the w Asix.Evo application should be specified. In the action, the
connection ID should be also specified which will be used by the other connection mode
actions.

 The AsbaseOpen action is generally used to handle the Diagram Opened event of the
diagram, on which the AsBase data will be shown. In classical applications the AsBase class
object was responsible for establishing the connection.

• Data Visualization on a Diagram

The data presentation is performed by using standard diagram objects.

The process variables, constituting the variable set specified in the AsbaseOpen action are
used for this purpose. These variables assume the values compatible with the AsBase data
set field values for the active record.

• Navigating Within the Data of the Connection

The AsbaseAdd, AsbaseDelete, AsbaseUpdate, AsbaseNavigate actions allow performing
operations on the connection data. Each of these functions has a parameter specifying the
connection ID. The operations performed by these actions, generally relate to the connection
active record. The AsbaseNavigate action is of particular importance, because the action is
used in general to change the active record, but it can also change the data filtering (initially
set out while establishing the connection).

• Connection Termination

The connection is terminated with the AsbaseClose action. The action is generally used to
handle the Diagram Closed event of the diagram, on which the Asbase data were shown.

8 Operation with the AsBase Program

47

8.1 Connection Filter

One of the AsbaseOpen and AsbseNavigate action parameters (in the $Filter option) is the filter
which allows selecting the data to be used in a connection.

The filter syntax is compatible with the WHERE clause of the SQL language, with additional optional
extensions which allow inserting process variable values and time constraints into this clause. The
words WHERE are not specified in the filter definition. There is also a possibility to add the ORDER BY
clause for data sorting to the filter syntax.

As a rule, in the filter definition the references to the fields defined in an archive set or in a recipes
group are used. In order to use a registration set, recipe or load history field value as a filter
element, the identifier of the field should be preceded by the prefix "V_". In the case of a
registration set archive, a value status and a timestamp of this value may be associated with each
field value. To use these components, the field ID of the registration set should be preceded by the
prefix "S_" or "T_". In the case of recalculated recipes, the percentage value field can be called in a
load record by using the prefix "VP_".

AsbaseOpen(conn1, $Archive, Paints, PaintsDgr, null, null, ”V_Akt=1”)

In the example above, the used filter retrieves data only from the Paints egistration set for which the
field value with the Act identifier is equal to 1.

In addition to the references to the field values defined by the application designer, the static names
of the AsBase table fields, i.e. such fields that are always present in a table can be used. Static fields
are described in the table below.

Table: AsBase Table Static Fields.

Name Meaning

LOCALTIME Local time of a record logging or recipe loading

UTCTIME UTC time of a record logging or recipe loading

STATUS Recipe load operation status

SOURCE Source of the record logged

NAME Name of the recipe

LOADBY Specifies the user who has loaded the recipe

TARGET Recipe load target

CREATED BY Recipe creator

BATCH The batch value for loading the recipe being recalculated.

Asix.Evo - Application Parameterization

48

8.1.1 Inserts

In the filter contents it is possible to use inserts which allow including the current process variable
values and dynamic limiting of a time range.

 The insert of the filter is contained in curly brackets.

 The expansion insert which allows using the process variable value has the following form:

{V:variable_name}

The variable value replaces the insert in its position.

The insert which defines the time filter elements has the following form:

{T:code [:field_id]}

This code defines the time range. The following codes are available:

t - today

y - yesterday

sy - since yesterday

tw - this week

lw - last week

slw - since last week

tm - this month

lm - last Month

slm - since last month

ty - this year

ly - last year

sly - since last year

The optional Field_id filter specifies the table field for which the time filter is to be used. If this
element is omitted, it is assumed that the filter applies to the time the record was logged in the
table. If the ID field is specified, the field should be of Data type. When this insert is used, the entire
insert text will be replaced with an expression (compatible with SQL language syntax) limiting the set
of table records to those the value (time) of which is within the time range specified by the code
parameter.

8 Operation with the AsBase Program

49

The filter containing inserts is not modified during the connection. For example, if the time filter of
"today" type is defined and the connection is open for a second day, the records from the previous
day will be shown. Only the connection re-opening or re-applying of the same filter in the operator
action will update the data.

The inserts can not occur inside the filter elements contained within square brackets [and] and
within quotes ' and ". To contain the insert content within these delimiters, the delimiters must be
placed between curly brackets.

{'}{V: variable_name }{'}

 The above filter fragment will be replaced with the variable value enclosed in single quotes.

 The use of inserts was necessary in classic applications. In the Asix.Evo applications, dynamically
varying filters may be created using expressions.

”V_Akt={V:Z1}”

”V_Akt=”+Variable(Z1)

Both the above versions of the filter definition will function the same way. The records for which the
Act field value is equal to the Z1 variable value will be selected (at the time of the action execution).

8.2 Users Permissions

If the AsBase program is run within the linked Asix.Evo application, then the security settings defined
in the Asix.Evo are used. In this case, the settings selected directly within the AsBase application are
of no significance. Nevertheless, if the AsBase application is run independently, the settings will be
used. In a typical configuration, in the AsBase application a single administrative operator is defined –
it protects the AsBase database against unauthorised access. The other users have such permissions
as specified in the Asix.Evo security system configuration.

8.3 AsBase in Browser-Based Applications

As in the case of classic applications, the latest Asix.Evo program version does not enable integration
with the AsBase program in the browser mode. All workstations exchanging data with AsBase have to
operate in the Window mode.

50

9 Synchronization of the Application Files

In the case of multiply workstation installations, maintaining consistent file versions of the
application on all workstations becomes a significant issue. This applies mainly to the phase in which
the application is still in development and the definition files are frequently modified. In the case of
applications operating in the browser mode this is of less significance - a changed version of the
application is published on the server once and from there it is automatically transferred to all Web
terminals. In the case of window applications, the application synchronization system of the Asix.Evo
comes to help.

The concept of the synchronization system operation is based on defining a network template
directory which is available to all the application workstations. The changed files are loaded to the
template directory and from there they are automatically transferred to all the application
workstations.

The synchronization module parameters are set out in the workstation settings work panel in the
Synchronization tab.

Fig. Synchronization Module Parameters.

9.1 Synchronisation of the Application Definition Directory

The application definition directory can be synchronised once at the start of the application and/or
periodically at a determined period of time. In the Template application path field, the template

9 Synchronization of the Application Files

51

location should be specified. It is possible to reference to the directory on the locally mapped disc or
use the UNC name. If, in order to access the template directory, a special system authorization is
required, then in the User and Password fields the ID and password of the User with the required
permissions should be entered.

In the case of a synchronization executed at the start-up of the application, the program which will
be executed on the synchronization completion may be declared in the Program executed after
startup synchronization box. This program is able to handle any extra tasks required by the
application for correct completion of the synchronization.

Automatic synchronization involves transferring the updated files of the template directory into a
local definition directory. The files which are not present in the local directory are transferred as well.
Copying in the other direction - into the template directory is performed manually. The system tools
or the Asix.Evo synchronization window (opened using the Synchronization command from the Tools
 menu) may be used.

Fig. The 'Application Synchronization' Window.

In this window all the definition directory files are shown. The differences between the template and
local directory are highlighted with colours. Using the window buttons it is possible to copy selected
or updated files in either direction and to delete selected template files. During the synchronization
operation one may write a note describing the changes implemented. Notes are saved to the
SynchronizationNotes.xml files in the template directory.

Asix.Evo - Application Parameterization

52

9.2 Synchronization of Working Directory

The parameterization of the working directory synchronization requires just to specify the template
directory and possibly the details of the user with access permissions to the directory.

The working directory synchronization requires just synchronization of the local trend patterns
stored in the TrendPatterns subdirectory. The synchronizer operation is fully automatic. In the case
of changing or adding a local pattern trend, the file which describes the trend is immediately
transferred into the template directory. The functions used for reading the pattern trends always
check if the updated definitions exist in the template directory and, if necessary, copy them to the
local drive.

53

10 Using Pattern Trends

Pattern trends have two typical uses:

• Visual comparison of the actual trends of the process variables with the ideal
pattern trend.

• Transfer of data determining process running method to the controller.

In the classic applications, the pattern trends were stored in a special type of archive of the ASPAD
module. Additionally, selection and edition of the trends was supported by the PEdit and PSelect
programs. All this functionality is now directly integrated into the Asix.Evo program.

10.1 Trends Edition

Editing and managing of the pattern trends is carried out in the trend editor which can be opened
with the Trend patterns editor command of the Tools menu. During operation in the application run
mode, a window may be opened via the EditPatterns operator action.

Asix.Evo - Application Parameterization

54

Fig. Pattern Trend Editor.

The pattern trends are divided into common trends and user local trends. The trend type should be
determined as early as during its creation. Common trends must be created in the application edit
mode. The file describing such trend is stored in the TrendPatterns subdirectory of the application
definition directory. The common trend can not be changed by the user in the application run mode.
The local trends are saved to the TrendPatterns subdirectory of the application working directory.
Local trends can be set up and edited in the application run mode. In general, they are used on a
specific application workstation. However, if synchronization of the working directory content is
enabled, the local trends can be transferred to the other application workstations.

The pattern trend points can be edited in the table of points. It is also possible to move the location
of the points directly on a preview chart. The left mouse button is used to move the points, the right
one to move the chart and double-clicking adjusts the chart scale to the definition of the points.

If a conversion of the pattern trends from a classic application is necessary, the CSV file import
function may be used.

10 Using Pattern Trends

55

10.2 Displaying Pattern Trends

Pattern trends can be displayed as a curve in the Chart class object. The pattern trends displayed on
the Chart object may be pre-parameterized. The object also has its own interfaces which, in the
application run mode, allow selecting the pattern trend and its first node.

It is also possible to automatically control the pattern trends parameters in the Chart object. An
example of such operation is described under the Controlling Trend Pattern Displaying section in the
Asix.Evo-Techniques of Diagram Creation user manual.

10.3 Trend Transfer

Pattern trends may also be used as the base to control the process under control of the PLC. To do
this, it is necessary to transfer the trend definition to the PLC. As no standards exist, Asix.Evo has no
built-in trend transfer functions. Operations of this type should be executed via scripts. The example
of a pattern trend transfer to the PLC is described under the Transferring Pattern Trends section of
Asix.Evo - Scripts user's manual.

56

11 Keyboard

If the application is run on a computer without a keyboard, the use of an on-screen keyboard to
enter the settings may be necessary. A keyboard integrated with the operating system may be used.
However, Asix.Evo provides two other mechanisms which are discussed in the subsequent chapters.

11.1 Keyboard Object

An object of the Keyboard class should be located on the diagram which contains the objects
designed for entering settings. The keyboard may be displayed as fixed or may operate in the so-
called auto-hide mode (the keyboard is displayed on the diagram only when the edit mode is active).

 When the s edit mode of ettings is active (e.g. for the object of the Text class) subsequent characters
can be entered using keyboard fields.

11.2 Box Keyboard

A more flexible mechanism is the keyboard displayed in its own box. In addition to entering settings
in the diagram objects it also allows editing fields in the dialogue windows.

The appearance and operation mode of the on-screen keyboard is defined by the workstation
settings of the working panel in the Settings tab.

Asix.Evo_Application_Parameterization

57

Fig. The On-Screen Keyboard Settings.

Selecting the Automatically show on-screen keyboard check box automatically displays the keyboard
window when entering into the edit mode.

If the automatic mode is not enabled or entering into editing occurs for the application component
which is not directly controlled, the keyboard window may be activated with the use of
ShowKeyboard and ShowNumericKeyboard operator actions.

	1 Configuration of the Application Workstations
	1.1 'Stations' Operating Panel
	1.1.1 Creating New Workstation

	1.2 Setting the Parameters Depending on a Workstation
	1.3 Configuration of Workstation Communication Parameters
	1.3.1 Server Aliases
	1.3.2 Foreign Workstations

	1.4 Running the Application in the Context of the Selected Workstation
	1.5 Connection Diagnostics

	2 Current and Historical Data Access Configuration
	2.1 Data Server Configuration
	2.2 Process Variable Definition Database
	2.2.1 Creating a New Database
	2.2.2 Importing the Previously Created Database
	2.2.3 Editing and Browsing the Variable Definition Database
	2.2.4 Variable Attributes
	2.2.5 Setting the Database Activity Status

	2.3 Communication Channels
	2.3.1 Communication Drivers
	2.3.1.1 NONE driver
	2.3.1.2 Network Driver
	2.3.1.3 Asix6 Driver

	2.3.2 Types of Virtual Channels

	2.4 Declaration of the Process Variable Value Archives
	2.4.1 Archives Types
	2.4.1.1 Memory Archive
	2.4.1.2 Network Archive
	2.4.1.3 Asix6 Archive
	2.4.1.4 Random Data Archive

	3 Scheduler Configuration
	3.1 Other Methods of the Operator Action Automatic Execution

	4 Parameterization of Multilingual Applications
	4.1 Application Languages Declaration
	4.2 Switching the Operating Language
	4.3 Program Texts
	4.4 Application Texts
	4.4.1 General Purpose Texts

	5 Security System
	5.1 Defining Users
	5.2 Defining Roles
	5.2.1 The "Runtime Administration Right" Permission
	5.2.2 The "Control Send Right" Permission
	5.2.3 The "Alarms Acceptation Right" Permission
	5.2.4 The "Desktop Is Enabled" Permission

	5.3 The Security System Operating Mode
	5.3.1 Standard Mode
	5.3.2 Central Mode

	5.4 Settings Specific for a Workstation
	5.5 Using the Security System in the Application
	5.5.1 User Login
	5.5.2 Verification of Permissions
	5.5.3 Changes in the Permission Parameters in the Application Run Mode
	5.5.4 Viewing the Login Event Log

	6 Recording Control Operation
	7 Operation with AsTrend Program
	7.1 Operation in the Browser Version of the Application

	8 Operation with the AsBase Program
	8.1 Connection Filter
	8.1.1 Inserts

	8.2 Users Permissions
	8.3 AsBase in Browser-Based Applications

	9 Synchronization of the Application Files
	9.1 Synchronisation of the Application Definition Directory
	9.2 Synchronization of Working Directory

	10 Using Pattern Trends
	10.1 Trends Edition
	10.2 Displaying Pattern Trends
	10.3 Trend Transfer

	11 Keyboard
	11.1 Keyboard Object
	11.2 Box Keyboard

